首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 314 毫秒
1.
We studied the ultrastructural organization of the ovarian follicles in a placentotrophic Andean lizard of the genus Mabuya. The oocyte of the primary follicle is surrounded by a single layer of follicle cells. During the previtellogenic stages, these cells become stratified and differentiated in three cell types: small, intermediate, and large globoid, non pyriform cells. Fluid‐filled spaces arise among follicular cells in late previtellogenic follicles and provide evidence of cell lysis. In vitellogenic follicles, the follicular cells constitute a monolayered granulosa with large lacunar spaces; the content of their cytoplasm is released to the perivitelline space where the zona pellucida is formed. The oolemma of younger oocytes presents incipient short projections; as the oocyte grows, these projections become organized in a microvillar surface. During vitellogenesis, cannaliculi develop from the base of the microvilli and internalize materials by endocytosis. In the juxtanuclear ooplasm of early previtellogenic follicles, the Balbiani's vitelline body is found as an aggregate of organelles and lipid droplets; this complex of organelles disperses in the ooplasm during oocyte growth. In late previtellogenesis, membranous organelles are especially abundant in the peripheral ooplasm, whereas abundant vesicles and granular material occur in the medullar ooplasm. The ooplasm of vitellogenic follicles shows a peripheral band constituted by abundant membranous organelles and numerous vesicular bodies, some of them with a small lipoprotein core. No organized yolk platelets, like in lecithotrophic reptiles, were observed. Toward the medullary ooplasm, electron‐lucent vesicles become larger in size containing remains of cytoplasmic material in dissolution. The results of this study demonstrate structural similarities between the follicles of this species and other Squamata; however, the ooplasm of the mature oocyte of Mabuya is morphologically similar to the ooplasm of mature oocytes of marsupials, suggesting an interesting evolutionary convergence related to the evolution of placentotrophy and of microlecithal eggs. J. Morphol., 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
Follicular cells in Coreus marginatus are diversified into two main subpopulations of different cell morphology, ultrastructure, distribution of F-actin and ionic communication between oocyte and follicular cells. Cells forming the insert between the operculum and the bottom of the egg envelope and, subsequently, a circle of micropylar processes were retarded as compared to the developmental advancement of follicular cells in the equatorial part of ovarian follicle. Pinocytotic and vitellogenic activity in the ooplasm adjoining the insert cells were lower than in other regions. The inhibition of vitellogenesis in the neighbourhood of insert cells, which were not in ionic contact with the ooplasm, supports the hypothesis that there is a relation between follicular cell development and the regional intensity of vitellogenesis in heteropteran ovarian follicles.  相似文献   

3.
Maturation of the oocyte in the polytrophic ovariole of the flesh fly, Sarcophaga ruficornis was subdivided into 12 growing stages. The nurse cells increasing in volume during initial stages 1–6, shrink sharply in size from stage 7 onwards and finally disintegrate in stage 12. The oocyte continues to increase in volume till it reaches 1.2×1077μ3 in stage 12 before ovulation. The onset of vitellogenesis is marked by the appearance of protein-containing granules in the peripheral ooplasm in stage 7. The follicular epithelial cells around the oocyte exhibit changes in their shape in different stages and perhaps facilitate as well as stop the transport of yolk precursors to the ooplasm. Finally, after the formation of egg membranes around the yolk-filled oocyte, the follicular epithelium is sloughed off in stage 12.  相似文献   

4.
Ogielska, M., Rozenblut, B., Augustyńska, R., Kotusz, A. 2010. Degeneration of germ line cells in amphibian ovary. —Acta Zoologica (Stockholm) 91 : 319–327 We studied the morphology of degenerating ovarian follicles in juvenile and adult frogs Rana temporaria, Rana lessonae and Rana ridibunda. Degeneration of primordial germ cells was never observed and was extremely rare in oogonia and early oocytes in a cyst phase in juveniles. Previtellogenic oocytes were rarely affected. Three main types of atresia were identified. In type I (subdivided into stages A–D), vitellogenic oocytes are digested by proliferating follicle cells that hypertrophy and become phagocytic. A – germinal vesicle shrinks, nucleoli fuse, oocyte envelope interrupts, and follicular cells hypertrophy; B – follicular cells multiply and invade the oocyte; C – entire vesicle is filled by phagocytic cells; D – degenerating phagocytes accumulate black pigment. Type II is rare and resembles breakdown of follicles and release of ooplasm. In type III, observed in previtellogenic and early vitellogenic oocytes, ooplasm and germinal vesicle shrink, follicle cells do not invade the vesicle, and condensed ooplasm becomes fragmented. The residual oogonia in adult ovaries (germ patches) multiply, but soon degenerate.  相似文献   

5.
奚耕思  郎东梅 《昆虫知识》2003,40(2):172-175
用孚尔根及甲基绿 -派洛宁组织化学染色法了解北京油葫芦Teleogryllusmitratus(Burmeister)卵子发生各时期阶段中卵内DNA及RNA动态变化规律。在卵子发生的最初阶段 ,核中DNA的合成和复制最活跃 ,以后便慢慢减弱 ;而RNA则在第 2阶段合成最旺盛。在卵子发生各个阶段 ,滤泡细胞中DNA ,RNA均为阳性反应 ,并在卵细胞的卵黄形成期活动旺盛 ,为卵母细胞卵黄蛋白形成提供物质基础。卵子发生第 4~ 6阶段 ,滤泡细胞开放时期 ,血淋巴内一些物质可能直接或间接通过滤泡细胞间隙进入卵母细胞内 ,参与卵母细胞的发育和构建。研究表明卵子发生初期卵母细胞的发育和物质构建主要以内源性合成积累为主 ,中后期则有外源性物质的参与。  相似文献   

6.
Light and ultrastructural investigations on sub-adult and adult sexually mature females, demonstrates that in Torpedo marmorata folliculogenesis starts in the early embryo and that the two ovaries in the adult contain developing follicles of various sizes and morphology. Initially, the follicle is constituted by a small oocyte, surrounded by a single layer of squamous follicle cells. The organization is completed by a basal lamina and, more externally, by a theca, that at this stage is composed by a network of collagen fibers. As the oocyte growth goes on, during previtellogenesis and vitellogenesis, the organization of the basal lamina and of the oocyte nucleus does not change significantly. The basal lamina, in fact, remains acellular and constituted by fibrils intermingled in an amorphous matrix; the nucleus always shows an extended network of chromatin due to the lampbrush chromosomes, and one or two large nucleoli. By contrast, the granulosa (or follicular epithelium), the ooplasm, and the theca cells significantly change. The granulosa shows the most relevant modifications becoming multi-layered and polymorphic for the progressive appearance of intermediate and pyriform-like cells, located respectively next to the vitelline envelope, or spanning the whole granulosa. The appearance of intermediate cells follows that of intercellular bridges between small follicle cells and the oocyte so that one can postulate that, as in other vertebrates, small cells differentiate into intermediate, and then pyriform-like cells, once they have fused their plasma membrane with that of the oocyte. Regarding the ooplasm, one can observe as in previtellogenic follicles, it is characterized by the presence of intermediate vacuoles containing glycogen, while in vitellogenic follicles by an increasing number of yolk globules. The theca also undergoes significant changes: initially, it is constituted by a network of collagen fibers, but later, an outermost theca esterna containing cuboidal cells and an interna, with flattened cells, can be recognized. The role of the different constituents of the ovarian follicle in the oocyte growth is discussed.  相似文献   

7.
The ovary of Sarcophaga lineatocollis is a typical polytrophic ovary. Each of its 25-30 ovarioles is composed of a small terminal filament, a small germarium and a vitellarium consisting of the egg follicle. The tunica propria is a noncellular, PAS-positive membrane. The ovarian follicle contains fifteen trophocytes and one oocyte. RNA is synthesized with the aid of the nuclei in the trophocyte cytoplasm, which are RNA- and PAS-positive. Protein is deposited intensively in the early stages of the trophocytes. The trophocytes of Sarcophaga lineatocollis synthesize RNA and protein more actively than the oocyte. In this fly, protein yolk precursor (PYP) bodies are supplied by the trophocyte cytoplasm to the ooplasm at an advanced stage of development. Nucleolar budding and vacuolation are observed in the trophocytes. RNA, DNA, protein and PYP bodies appear to be transported to the ooplasm from the trophocytes. Pyknotic trophocyte nuclei can be seen entering the ooplasm. The perinuclear Golgi bodies of the trophocytes help in the production and maturation of PYP bodies in the trophocytes before they are organized and passed on to the oocytes. Some RNA is contributed to the oocyte by the follicular epithelium. All these processes leading to maturation and development of the oocyte are discussed and interpreted.  相似文献   

8.
Ovarioles were found to be infected with Spiroplasma, Wolbachia, and Rickettsia in Adalia bipunctata females with maleless progeny in different natural populations. Ooplasm was infected with few Wolbachia bacteria. In ooplasm infected by Rickettsia, bacteria were present in small foci. Spiroplasmas were found encapsulated into ooplasm from the wider intercellular spaces between epithelial and oocyte cells. The cytoplasm of follicular epithelia infected with Rickettsia was heavily destroyed, but the nucleus was intact and free from bacteria. The essential feature of follicular epithelium cells from Spiroplasma and Wolbachia infected A. bipunctata females was inclusions of three types: crystalline, filaments, and concentric myelin-like lamellae. Observations of smears prepared from ovaries of A. bipunctata from natural populations revealed a low concentration of bacteria within a microscopy field (less 10 bacteria) in more than 90% of specimens, and only a few ovaries were heavily infected. Two different ways of bacterial invasion of the oocyte are suggested: Spiroplasma-like, through the intercellular spaces in the epithelium and Rickettsia-like, through the cytoplasm of follicular epithelium cells. Bacteria were not found in germarium zones and we suggest that each follicle is infected from haemolymph.  相似文献   

9.
Hinrichs K 《Theriogenology》1991,36(2):157-168
Oocytes were collected by aspiration of follicles from horse ovaries obtained at surgery or post-mortem. The oocytes were classified according to morphology of the ooplasm and cumulus. The size of the corresponding follicles was measured, and sections of the follicles were fixed and examined histologically to determine the stage of viability or atresia. In Part 1, 11 pairs of ovaries were examined and all follicles were sectioned; in Part 2, 9 pairs of ovaries were examined and only those follicles from which oocytes were recovered were sectioned. The number of follicles examined per pair of ovaries in Part 1 (average +/- SD) was 12.9 +/- 4.1. The proportion of follicles that were viable increased with increasing follicular size (P < 0.01); the percentage of viable follicles was 21, 42 and 83% for follicles < 10 mm, 10 to 19 mm, and >/= 20 mm in diameter, respectively. The overall oocyte recovery rate on aspiration of follicles was 46%. There was no significant difference in the oocyte recovery rate between viable and atretic follicles. A significantly higher proportion of oocytes recovered from viable follicles had granular ooplasm (64 vs 39%; (P < 0.05); whereas significantly more oocytes from atretic follicles had a misshapen or dense ooplasm (23 vs 6%; P < 0.05), or an expanded or pyknotic cumulus (24 vs 6%; P < 0.05). The most common cumulus morphology (63% of oocytes from viable follicles and 48% of oocytes from atretic follicles) was presence of only the corona radiata. Only 11% of oocytes from viable follicles and 9% of oocytes from atretic follicles had a complete cumulus present.  相似文献   

10.
The ovarian follicles of Ctenosaura pectinata exhibit a clear seasonal cycle in morphology. Early in development, each oocyte is surrounded by a granulosa composed of a single layer of cuboidal or squamous cells and thin thecal layers. As folliculogenesis progresses, the granulosa becomes multilayered and composed of three distinct cell types. After vitellogenesis begins and active sequestration of yolk into the ooplasm is initiated, the granulosa is reduced to a single cell type. We observed a striking change in the appearance of the ooplasm during folliculogenesis. Early ovarian development is characterized by an ooplasm with homogeneously distributed fine fibrils, but as development progresses, the ooplasm contains dense clumps of fibers aggregated into distinctive bundles. The ooplasm displays further complexity in morphology as previtellogenic growth continues and as different regions exhibit various combinations of fibers and vacuoles. Yolk platelet formation is complex, with distinctive stages generating platelets with varying morphologies. © 1996 Wiley-Liss, Inc.  相似文献   

11.
The annual histological changes in ovarian morphology (oogenesis, follicular atresia, and corpus luteum) are described for the Mexican lizard Sceloporus grammicus, in two populations that inhabit contrasting environments (vegetation categories, climate, precipitation, and temperature) from Hidalgo State, Mexico. Two germinal beds were situated on the dorsal surface of each ovary of this species. In both the populations, oogenesis involves two major processes: previtellogenesis and vitellogenesis. The histological changes during previtellogenesis are similar to those for other reptilian sauropsids, whereas vitellogenesis differs and the features of this last process are described for the first time. In early previtellogenesis, primary oocytes have fibrillar chromosomes and the ooplasm stains slightly. The primordial follicles are surrounded by a granulosa composed of cuboidal follicular cells. During late previtellogenesis, the oocyte had an eccentric nucleus with lamp‐brush chromosomes and multiple nucleoli. The granulosa becomes multilayered and polymorphic, containing three cell types: small, intermediate, and pyriform. The zona pellucida was homogeneous and clearly observed. In early vitellogenesis, the oocyte showed several small acidophilic granules distributed in the center and the periphery of the oocyte. As vitellogenesis progresses, the yolk platelets move toward the central area of the oocyte and they fuse to form acidophilic and homogeneous yolk. Lipid droplets were distributed irregularly in the ooplasm of the oocyte. In Zacualtipán, the results revealed a strong seasonal reproductive activity. Females had vitellogenic follicles from July to September, and pregnant females were founded from September to March. In Tizayuca, the results showed an unusual pattern of reproductive activity. Females with vitellogenic follicles and pregnant females were found throughout the year, indicating continuous reproduction. We suggest that the observed differences in reproductive activity from these populations indicate adaptative fine tuning in response to local environmental conditions. These results contribute to the knowledge of variation in vitellogenesis and reproductive strategies of this species and among spiny lizards overall. J. Morphol. 275:949–960, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

12.
Follicular size, follicular atresia, and oocyte morphology were investigated for the possible relation of these characteristics to the developmental competence of bovine oocytes. Ovaries from a local slaughterhouse were dissected to obtain a heterogeneous population of follicles. Half of each follicle was fixed for histological analysis, and the oocytes were detached carefully and cultured individually. Before in vitro maturation, the oocytes were grouped into six different classes based on the morphology of the cumulus and the ooplasm: classes 1 and 2 represent oocytes with a homogeneous ooplasm plus a compact and complete cumulus, and classes 3–6 represent oocytes with a granulated ooplasm and an incomplete and/or expanded cumulus. Oocytes from class 3 (beginning of expansion in outer cumulus layers and slight granulations in the ooplasm) developed past the 16-cell stage significantly (P<0.05) more than oocytes with a compact and complete cumulus (classes 1 and 2) and oocytes from classes 4–6 (incomplete and/or expanded cumulus) after 5 days of in vitro culture. Oocytes from follicles measuring 3 mm or less did not develop past the 16-cell stage, whereas follicles of 3–5 mm and 5 mm or larger developed at similar rates (17% and 21% morulae, respectively). The state of the follicle did not affect whether an embryo reached at least the 16-cell stage, as comparable rates were obtained in all three groups of follicles: nonatretic (20%), intermediate (14%), and slightly atretic (16%). We concluded that oocytes acquire developmental competence late in the follicular phase, possibly when the first signs of atresia have appeared, and that oocytes with beginning signs of degeneration (class 3) will develop significantly more than all other classes. Class 3 oocytes originated from follicles that were generally atretic and therefore in later phases of follicular growth, suggesting that these oocytes, having been subjected longer to the follicular microenvironment, are more differentiated (possibly at the cytoplasmic level) than other classes of oocytes. © 1995 Wiley-Liss, Inc.  相似文献   

13.
The aim of the present study was to characterize the ultrastructure of zebu cow preantral follicles (PAFs). Ovarian cortex samples were processed for light and transmission electron microscopy. Primordial follicles consisted of an oocyte surrounded by one layer of flattened or flattened-cuboidal granulosa cells. The oocyte contained a large and usually eccentric nucleus. Most organelles were located at the perinuclear ooplasm. Round shaped mitochondria, which contained electron-dense granules, smooth and rough endoplasma reticulum and a Golgi apparatus were also observed. Vesicles and coated pits were often observed in the cortical ooplasm. In primary follicles, the oocyte was surrounded by one layer of cuboidal granulosa cells. Short microvilli were observed on the oolema. Secondary follicles consisted of an oocyte surrounded by a variable number of layers of cuboidal granulosa cells. Small secondary follicles had an ultrastructure very similar to that observed in primary follicles. At this follicular stage, the zona pellucida was beginning to form around the oocyte. In large secondary follicles, the zona pellucida was totally developed around the oocyte. Several granulosa cell projections could be detected that were encroaching into the zona pellucida and protruding towards the oocyte, where gap junctions were observed between oocyte and granulosa cell membranes. Organelles within the oocyte were located at the periphery of the ooplasm, and clusters of cortical granules were observed. Round mitochondria were abundant in all developmental stages. In conclusion, this study described the ultrastructure of zebu cow PAFs, and some unique characteristics could be observed as compared with what has been reported for follicles of Bos taurus cattle.  相似文献   

14.
15.
The developmental stages of female germ cells were analysed in a wild population of the protogynous teleost Epinephelus marginatus (Lowe, 1834). 321 wild dusky grouper females were collected in the South Mediterranean Sea during the spawning season and their ovaries analysed using histological and histochemical techniques. Oocyte morphology, nucleus-cytoplasm ratio (N/C) range, location and movements of cytoplasmic inclusions during primary growth, vitellogenesis and final oocyte maturation were described. The distribution of proteins, lipids and carbohydrates through oocyte development was also investigated in 50 females. Lipid vesicles appeared firstly in the mid ooplasm of oocytes larger than 130 microm, at the beginning of the secondary growth phase. Immediately afterwards, small carbohydrate granules (PAS and Alcian blue positive) appeared before the occurrence of the first yolk granules. Tyrosine-enriched proteins were especially evidenced in the zona radiata interna of late vitellogenic oocytes. Specific lectin binding patterns reflected characteristic differences in the content and distribution of specific sugar moieties expressed in the oocytes during vitellogenesis and final maturation. At the end of vitellogenesis and during final maturation, follicular cells, zona radiata, and cortical alveoli were characterised by a strong increase of specific binding for WGA.  相似文献   

16.
The cortical zone of oocyte of Nandus nandus has been studied by cytological and histochemical techniques. In an early stage of oocyte development some granular substances appear in the juxtanuclear region which during oocyte growth move to the peripheral ooplasm and forms a thick cortical granular layer. Cytochemically, this cortical granular layer consists of proteins and carbohydrates along with RNA positive material, lipids, mitochondria and Golgi bodies. This cortical granular layer, later on, converts into the cortical vacuolar layer and ultimately forms the cortical alveolar structures in the vitellogenic oocyte of Nandus nandus. The results suggest that the cortical zone plays an important role in the storage of substances transported from the follicular epithelium to the oocyte. Further, the cortical granular substances which are rich in proteins, carbohydrates and lipoidal material, also help in the formation of jelly layers of the developing oocytes.  相似文献   

17.
The present work has investigated the morphological and ultrastructural changes occurring during degeneration of goat preantral follicles preserved in vitro and showed quantitative data about the distribution of follicular degeneration types in the control and after preservation in coconut water solution or Braun-Collins solution at different temperatures (4, 20 or 39 degrees C) and incubation times (4, 12 or 24h). At the slaughterhouse, the pair of ovaries of each animal was divided into 19 fragments. One ovarian fragment was immediately fixed (control: Time 0). The other 18 fragments were randomly distributed in tubes containing 2ml of coconut water or Braun-Collins solution at 4, 20 or 39 degrees C and stored for 4, 12 or 24h. Normal preantral follicles exhibited a healthy oocyte surrounded by one or more well-organized layers of granulosa cells. The ooplasm contained numerous rounded or elongated mitochondria with continuous mitochondrial membranes. Golgi complexes were rare. Both smooth and rough endoplasmic reticulum were observed, either as isolated aggregations or complex associations with mitochondria and vesicles. Degenerated preantral follicles in the control tissue exhibited pycnotic nuclei of the oocyte, vacuolated ooplasm and normal granulosa cells. This kind of degeneration also predominated significantly (P<0.05) after preservation at 4 degrees C. In contrast, after preservation at 20 or 39 degrees C a significant predominance (P<0.05) of preantral follicles showing a retracted oocyte and swollen granulosa cells was observed. These follicles showed large irregularity of the oocyte and nuclear outlines. The ooplasm exhibited moderate proliferation of the endoplasmic reticulum and mitochondria showed disappearance of most of the cristae and damage to the mitochondrial membrane. Some follicles had numerous vacuoles in the ooplasm. Granulosa cells were spread and a low density of organelles was observed. The alterations in follicular structure progressed with an increase of temperature from 20 to 39 degrees C as well as with an increase of the incubation time from 4 to 12, or 24h. In conclusion, the present study shows for the first time that initial proliferation of the endoplasmic reticulum and damage to mitochondria are the first signs of degeneration in goat preantral follicles during storage in vitro.  相似文献   

18.
Using an immunofluorescence technique on ovarian sections, zona-immunoreactive components were detected in the cytoplasm of the oocyte from the beginning of its growth, when it is surrounded by only a thin squamous follicular cell layer, up to the end of its growth. In parallel with oocyte growth, the staining intensity decreased in the ooplasm. No staining was observed in the cytoplasm of the granulosa cells during normal follicular development in adult cyclic females. However, staining of the granulosa cells was observed at some stages of follicular development in immature females. This staining was especially evident in the ovaries of immature females (22 or 26 days old) stimulated with PMSG. In addition, the staining of the granulosa cells was consistently observed in ovaries showing an abnormal histology. Increased staining of the zona at its outer and inner regions could be distinguished in normal follicles, but when staining occurred on the granulosa cells no such pattern was observed over the zona matrix. These studies indicate that the oocyte itself but not the granulosa cells elaborates the native immunogenic material of the zona pellucida. The administration of PMSG at particular stages of ovarian differentiation interferes with follicular development leading to an abnormal extracellular assembly of the zona and its degradation (phagocytosis) by the surrounding granulosa cells.  相似文献   

19.
In Xenopus laevis oocytes, activation of angiotensin II (AII) receptors on the surrounding follicular cells sends a signal through gap junctions to elevate cytoplasmic calcium concentration ([Ca2+]i) within the oocyte. The two major candidates for signal transfer through gap junctions into the oocyte during AII receptor stimulation are Ins(1,4,5)P3 and Ca2+. In [3H]inositol-injected follicular oocytes, AII stimulated two- to fourfold increases in phosphoinositide hydrolysis and production of inositol phosphates. Injection of the glycosaminoglycan, heparin, which selectively blocks Ins(1,4,5)P3 receptors, prevented both AII-stimulated and Ins(1,4,5)P3-induced Ca2+ mobilization in Xenopus follicular oocytes but did not affect mobilization of Ca2+ by ionomycin or GTP. These results indicate that the AII-regulated process of gap junction communication between follicular cells and the oocyte operates through an Ins(1,4,5)P3-dependent mechanism rather than through transfer of Ca2+ into the ooplasm and subsequent Ca(2+)-induced Ca2+ release.  相似文献   

20.
The morphology of the follicular epithelium during the course of oogenesis in poultry (duck goose, hen, turkey) and at the first stages of oocyte growth in some wild birds (finch, totmit, wood-pecker, pigeon) was studied. The general patterns of the follicular epithelium changings are similar in the both groups of birds. In the process of the oocyte growth the flat follicular epithelial monolayer changes to cubic, prismatic, pseudostratified epithelium. It leads sometimes to the impression of multi-layerness owing to its irregular structure. During the oocyte rapid growth the surface of the oocyte increases causing tension on the epithelium layer. This process again turns the pseudostratified epithelium into primatic, cubic and flat epithelium. Pseudostratified structure of the follilicular epithelium is regarded as adaptation to the necessity of the rapid tension during rapid oocyte growth. Correlations of the follicular epithelium morphology with the oocyte diameter are established. Existance of a temporary multilayer stage is discussed with arguments against the interpretation of this stage as a real multilayer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号