首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Aims In most natural plant populations, there is a strong right-skewed distribution of body sizes for reproductive plants—i.e. the vast majority are relatively small, suppressed weaklings that manage not just to survive effects of crowding/competition and other hazards but also to produce offspring. Recent research has shown that because of their relatively large numbers, these relatively small resident plants collectively contribute most of the seed offspring production available for the population in the next generation. However, the success of these offspring will depend in part on their quality, e.g. reflected by seed size and resource content. Accordingly, in the present study, we used material from natural populations of herbaceous species to test the null hypothesis that there is no significant relationship between body size variation in resident plants—resulting from between-site variation in the intensity of crowding/competition—and variation in the mass or N content of their individual seeds.Methods Using populations of 56 herbaceous species common in eastern Ontario, total above-ground dry plant mass, mean mass per seed and mean nitrogen (N) content per seed were recorded for a sample of the largest resident plants and also for the smallest reproductive plants growing in local neighbourhoods with the most severe crowding/competition from near neighbours.Important findings Mass per seed was numerically smaller from the smallest resident plants for most study species, but with few exceptions, this was not significantly different (P> 0.05) from mass per seed from the largest resident plants. The results therefore showed no general effect of maternal plant body size on individual seed mass, or N content. This suggests that the reproductive output of the smaller half of the resident plant size distribution within these populations is likely to contribute not just most of the seed production available for the next generation but also seed offspring that are just as likely—on a per individual basis—to achieve seedling/juvenile recruitment success as the seed offspring produced by the largest resident plants. This conflicts with the traditional 'size-advantage' hypothesis for predicting plant fitness under severe competition, and instead supports the recent 'reproductive-economy-advantage' hypothesis, where competitive fitness is promoted by capacity to produce offspring that—despite severe body size suppression imposed by neighbour effects—in turn have capacity to produce grand-offspring.  相似文献   

2.
Restoration of plant populations is often undertaken using seed or plants from local sources because it is assumed they will be best adapted to the prevailing conditions. However, the effect of site disturbance on local adaptation has rarely been examined. We assessed local adaptation in three southwestern Australian forest tree species (Eucalyptus marginata, Corymbia calophylla, and Allocasuarina fraseriana) using reciprocal transplant trials at disturbed and undisturbed sites. Performance of plants within the trials was assessed over 2 years. Planting location accounted for the majority of the variation in most measures of performance, although significant variation of percent emergence among source populations was also detected. In all species, percent emergence and survival of plants sourced from Darling Range populations was significantly higher than that of plants from the Swan Coastal Plain, regions of contrasting edaphic and climatic environment. Survival of E. marginata over the first 18 months and emergence of C. calophylla were both higher in local plants, providing at least weak evidence for local adaptation. Where a local advantage was observed, the relative performance of local and nonlocal seed did not vary among disturbed and undisturbed sites. Evidence for enhanced establishment from local seed in at least one species leads us to recommend that where sufficient high‐quality seed supplies exist locally, these should be used in restoration. We also recommend longer‐term studies to include the possibility of local adaptation becoming evident at later life history stages.  相似文献   

3.
When plant monocultures are sown over a wide range of densities for a given period of time, the total biomass yield increases with density at low densities and then levels off at high densities, a phenomenon called constant final yield (CFY). There are several reported cases, however, where the total yield decreases at very high densities, but the reasons for such exceptions are not known. We used a spatially explicit, individual-based “field of neighborhood” simulation model to investigate the potential roles of spatial pattern, individual variation, and competitive stress tolerance for CFY. In the model, individual plants compete asymmetrically for light when their fields overlap, and this competition decreases growth and increases mortality. We varied (1) the initial size variation, (2) the spatial pattern, and (3) ability to survive intense competition and examined the effects on the density-biomass relationship. CFY was always observed when there was high variability among individuals, but not always when variability was low. This high size variation could be the result of high initial size variability or variation in the degree of local crowding. For very different reasons, very high and very low tolerance for competition resulted in decreasing total biomass at very high densities. Our results emphasize the importance of individual variation for population processes and suggest that we should look for exceptions to CFY in homogeneous, even-aged, regularly spaced populations such as plantations.  相似文献   

4.
By decreasing seed density, ants introduced into flats of uniformly sown seeds of Erodium cicutarium (Geraniaceae) created differences in the neighbor-free area available to individual plants. The changes in spatial patterns brought about by the ants were greater when a higher proportion of seeds was removed but were independent of initial seed density. These spatial changes and differences in seed density were examined for their effects on plant size and reproduction. Gini values were calculated to determine inequalities. As the inequality in space among individual plants increased, the variation in final biomass increased. The number of individuals reproducing was constant among treatments, and yet seed production per plant was significantly greater for populations in which the spatial pattern was influenced by seed predation. The decrease in density and changed spatial pattern, due to previous seed predation, resulted in a few individuals having much more space than others and consequently producing many more seeds. The increase in reproductive effort per flat was much greater than could be explained by the changing density alone. Our experiment demonstrates that spatial inequality, such as that generated by seed predators, can be more important than density in generating size inequalities in plant populations. This result can profoundly alter the competitive interactions between plants and determine which plants produce seed for the next generation.  相似文献   

5.
We studied the growth of individual Xanthium strumarium plants growing at four naturally occurring local densities on a beach in Maine: (1) isolated plants, (2) pairs of plants ≤1 cm apart, (3) four plants within 4 cm of each other, and (4) discrete dense clumps of 10-39 plants. A combination of nondestructive measurements every 2 wk and parallel calibration harvests provided very good estimates of the growth in aboveground biomass of over 400 individual plants over 8 wk and afforded the opportunity to fit explicit growth models to 293 of them. There was large individual variation in growth and resultant size within the population and within all densities. Local crowding played a role in determining plant size within the population: there were significant differences in final size between all densities except pairs and quadruples, which were almost identical. Overall, plants growing at higher densities were more variable in growth and final size than plants growing at lower densities, but this was due to increased variation among groups (greater variation in local density and/or greater environmental heterogeneity), not to increased variation within groups. Thus, there was no evidence of size asymmetric competition in this population. The growth of most plants was close to exponential over the study period, but half the plants were slightly better fit by a sigmoidal (logistic) model. The proportion of plants better fit by the logistic model increased with density and with initial plant size. The use of explicit growth models over several growth intervals to describe stand development can provide more biological content and more statistical power than "growth-size" methods that analyze growth intervals separately.  相似文献   

6.
Small populations of founding individuals or survivors of incomplete management programs often represent critical transitions in biological invasions. Theory predicts that population size affects reproduction and, consequently, a population’s expansion, but there are few empirical tests, and fewer that account for the reduced genetic diversity that often accompanies small population size. We created experimental small populations of invasive ryegrass (Lolium multiflorum) with population size varying independently from genetic diversity. Treatment independence was achieved by cloning plants to increase population size without changing diversity. Plant fitness was measured as the proportion of florets producing a seed. We analyzed the effects of population size, genetic diversity, and their interaction using ANCOVAs, one of which accounted for variation in individual plant growth. As predicted, smaller populations produced significantly lower proportion seed set. Low genetic diversity also reduced seed set, but this was best interpreted as part of a significant interaction with population size. Specifically, the effect of population size on the proportion seed set was over five times larger for populations in the medium genetic diversity treatment than the highest diversity treatment, and 6.7 times larger for populations with the lowest level of diversity. Population size variation had biologically meaningful consequences, as the rate of seed set within the low diversity treatment increased by 80 % with increasing population size. The results indicate that both the demographics and genetics of populations can influence reproduction and invasive potential, and must be considered when assessing risk and designing management plans for invasive plants.  相似文献   

7.
The effect of genotype and plant density, over the range from100 to 277 plants m–2, on plant to plant variation inprecision sown microplots has been assessed for three ‘leafless’(afafstst) pea (Pisum sativum) lines. This range of plantingdensities did not significantly affect the total above groundbiological yield per unit area of two of the genotypes (BS5and BS4) whereas the biological yield of the third (BS151) declinedat densities above 156 plants m–2. The differences weredue to changes in seed yield. The effect of planting densityon the variation between plants for biological yield withinthe microplots differed between the genotypes. The distributionpattern of BS4 and BS5 changed from normal to skewed with increaseddensity, while the distribution for BS151 remained skewed atall planting densities. The differences between the three genotypes in the proportionof biological yield partitioned into seed yield (harvest index)on a unit area basis was due almost entirely to the differencesin structure of the plant populations. The maximum level ofpartitioning by individual plants was similar for all threelines. The difference between this maximum for an individualand the crop harvest index therefore represents the area forimprovement of crop harvest index through breeding. It is suggestedthat improvements in dried pea yields will come, therefore,by selecting plants which form more uniform populations withregard to plant size and to the proportion of plant biomasspartitioned into seed (plant harvest index). Pisum sativum, leafless pea, population, genetic variation, distribution patterns, harvest index  相似文献   

8.
The use of local, native plant materials is now common in restoration but testing for polyploidy in seed sources is not. Diversity in cytotypes across a landscape can pose special seed transfer challenges, because the methods used to determine genetically appropriate materials for seed transfer do not account for cytotypic variation. This lack of consideration may result in mixing cytotypes through revegetation, which could reduce long‐term population viability. We surveyed nine populations of a native bunchgrass, Pseudoroegneria spicata, in three EPA Level III Ecoregions in the western United States to determine the frequency of polyploidy, whether there are differences in traits (phenotype, fecundity, and mortality) among plants of different cytotypes, and whether cytotype frequency varies among ecoregions. We assessed trait variation over 2 years in a common garden and determined ploidy using flow cytometry. Polyploidy and mixed cytotype populations were common, and polyploids occurred in all ecoregions. Four of the nine populations were diploid. The other five had tetraploids present: three had only tetraploid individuals whereas two had mixed diploid/tetraploid cytotypes. There was significant variation in traits among cytotypes: plants from tetraploid populations were larger than diploid or mixed populations. The frequency and distribution of cytotypes make it likely that seed transfer in the study area will inadvertently mix diploid and polyploid cytotypes in this species. The increasing availability of flow cytometry may allow ploidy to be incorporated into native plant materials sourcing and seed transfer.  相似文献   

9.
BACKGROUND AND AIMS: Species that exhibit among-population variation in breeding system are particularly suitable to study the importance of the ecological context for the stability and evolution of gender polymorphism. Geographical variation in breeding system and sex ratio of Daphne laureola (Thymelaeaceae) was examined and their association with environmental conditions, plant and floral display sizes, and pollination environment in a broad geographic scale was analysed. METHODS: The proportion of female and hermaphrodite individuals in 38 populations within the Iberian Peninsula was scored. Average local temperature and precipitation from these sites were obtained from interpolation models based on 30 years of data. Pollination success was estimated as stigmatic pollen loads, pollen tubes per ovule and the proportion of unfertilized flowers per individual in a sub-set of hermaphroditic and gynodioecious populations. KEY RESULTS: Daphne laureola is predominantly gynodioecious, but hermaphroditic populations were found in northeastern and southwestern regions, characterized by higher temperatures and lower annual precipitation. In the gynodioecious populations, female plants were larger and bore more flowers than hermaphrodites. However, due to their lower pollination success, females did not consistently produce more seeds than hermaphrodites, which tends to negate a seed production advantage in D. laureola females. In the northeastern hermaphroditic populations, plants were smaller and produced 9-13 times fewer flowers than in the other Iberian regions, and thus presumably had a lower level of geitonogamous self-fertilization. However, in a few southern populations hermaphroditism was not associated with small plant size and low flower production. CONCLUSIONS: The findings highlight that different mechanisms, including abiotic conditions and pollinator service, may account for breeding system variation within a species' distribution range and also suggest that geitonogamy may affect plant breeding system evolution.  相似文献   

10.
The effect of self-pollination compared with open-pollination on leek seed weight, and subsequent seedling emergence and growth were observed for two years of seed production. Open-pollination gave higher mean seed weights and lower seedling losses during plant establishment than self-pollination. Depending upon the year, the individual plant and pollination method, between 2. 4 and 56.6% of the variation in seedling weight c. 4–5 wk after sowing under controlled conditions was accounted for by differences in seed weight and time of seedling emergence. In 1984 but not 1983, a greater proportion of the variation in seedling weight was accounted for by seed weight and time of seedling emergence in open than self-pollinated seeds.  相似文献   

11.
Inferences about the role of epigenetics in plant ecology and evolution are mostly based on studies of cultivated or model plants conducted in artificial environments. Insights from natural populations, however, are essential to evaluate the possible consequences of epigenetic processes in biologically realistic scenarios with genetically and phenotypically heterogeneous populations. Here, we explore associations across individuals between DNA methylation transmissibility (proportion of methylation‐sensitive loci whose methylation status persists unchanged after male gametogenesis), genetic characteristics (assessed with AFLP markers), seed size variability (within‐plant seed mass variance), and realized maternal fecundity (number of recently recruited seedlings), in three populations of the perennial herb Helleborus foetidus along a natural ecological gradient in southeastern Spain. Plants (sporophytes) differed in the fidelity with which DNA methylation was transmitted to descendant pollen (gametophytes). This variation in methylation transmissibility was associated with genetic differences. Four AFLP loci were significantly associated with transmissibility and accounted collectively for ~40% of its sample‐wide variance. Within‐plant variance in seed mass was inversely related to individual transmissibility. The number of seedlings recruited by individual plants was significantly associated with transmissibility. The sign of the relationship varied between populations, which points to environment‐specific, divergent phenotypic selection on epigenetic transmissibility. Results support the view that epigenetic transmissibility is itself a phenotypic trait whose evolution may be driven by natural selection, and suggest that in natural populations epigenetic and genetic variation are two intertwined, rather than independent, evolutionary factors.  相似文献   

12.
We studied the effects of virus infection on dynamics of three Eupatorium makinoi populations in contrasting light environments, Gora-dani (a shaded population) and Minou 1 and Minou 2 (open-site populations). Censuses of the plants were taken for 8 yr in Gora-dani and 4 yr in Minou 1 and Minou 2. After the epidemics of virus infection, most plants were virus infected at both sites. The number of plants and the proportion of flowering individuals decreased rapidly and simultaneously in the shaded population in Gora-dani. By contrast, in the open-site populations of Minou, the proportion of flowering plants decreased first, and then the number of plants decreased gradually. Growth analysis of the plants in the Gora-dani population revealed that stem growth was significantly suppressed by infection and that flowering and survivorship of the infected plants decreased with reducing plant height. Since light availability affected plant growth and thereby flowering and survivorship, the differences in population dynamics between the two field sites could be caused by the differences in light environments. Although populations in open sites may persist for considerable periods after virus epidemics, the individual local populations of E. makinoi would eventually become extinct irrespective of light environments.  相似文献   

13.
In small populations of plant species with separate sexes, it can be expected that besides the local environment also stochastic events influence population sex ratios. Biased sex ratios may in turn negatively affect genetic diversity due to increased genetic drift and, in clonal plants, due to reduced sexual reproductive output. Empirical evidence for these processes is scarce, however. We investigated the pattern of sex ratio variation and the distribution of genetic variation of the dioecious clonal forest herb Mercurialis perennis using AFLP markers. Analysis of molecular variance indicated a pronounced genetic structure. Overall within-population genetic diversity was moderate and local sex ratios were slightly male biased. The proportion of male to female plants in large populations slightly increased with increasing light penetration to the herb layer. Small populations, on the contrary, displayed high variability in sex ratios, unrelated to the local light environment. Genotypic diversity decreased with more male-biased sex ratios. We conclude that stochastic events related to small population size and the local forest environment, related to canopy closure, affect the proportion of female plants and indirectly influence local genotypic diversity, likely through the degree of sexual reproduction. This is one of the first studies to report a clear association between gender proportions and genetic diversity of a dioecious plant species in a fairly large survey.  相似文献   

14.
Although the volume and chemical composition of nectars are known to vary among plant species and to affect pollinator response to plants, relatively little is known of the variation in volume, and sugar and amino acid composition within species. We collected nectar from Impatiens capensis in a nested design: three flowers from each of three plants from each of three populations. This design enabled us to quantify variation within individual plants, among plants within populations, and among populations. Using high performance liquid chromatography, we analyzed the sugar and amino composition of the 27 flowers. Analysis of variance showed that none of the parameters (volume, concentrations of three sugars and 24 amino compounds) varied within individuals. Variation in nectar volume was not significant among plants but was nearly significant among populations. Of the three sugars detected (sucrose, glucose, and fructose), the only significant variation was that of sucrose among populations. Concentrations of 12 amino compounds varied significantly at the plant level while 7 amino compounds varied among populations. The results indicate that: (1) pooling of nectar samples from flowers of individual plants can be an acceptable methodology for those seeking to understand within species variation; (2) amino compounds appear to vary more than either volumes or sugar concentrations; (3) future studies should assess how much of the observed variation is due to genetic versus environmental differences; (4) additional studies should examine the geographic variation in nectar parameters and pollinators of I. capensis in order to assess the role different pollinators play in shaping nectar composition.  相似文献   

15.
Ecological and evolutionary studies typically consider variation in single reproductive characters in isolation, without considering how they might be correlated with other reproductive and vegetative characters. In our study, we examined temporal patterns of variation and correlation in flower diameter and fruit length during a reproductive phase in two Massachusetts populations of the herb, Chelidonium majus. We also examined the relationships of such variation to measurements of seed yield components (mean seed weight and number per fruit) and aspects of plant vegetative size. Most of the variation in the sizes of reproductive characters occurred within individual plants, instead of among plants or between populations. Flower and fruit sizes as well as seed number per fruit declined significantly during the season in both populations. Only mean seed size per fruit was relatively stable for individual plants in both populations. Conserving resources by a gradual reduction in the size of reproductive characters over the season may be a strategy for maternal plants to continue seed production. The strong, persistent patterns of correlation between certain characters, such as flower and fruit size, in spite of extensive phenotypic plasticity, was interpreted as indirect evidence for developmental correlation. Furthermore, vegetatively larger plants produced not only more flowers and fruits, but also consistently larger flowers and fruits. The results emphasize that variation in fitness characters, such as seed size and number, should not be viewed in isolation from vegetative characters, flower, and fruit sizes in ecological and evolutionary studies, if the goal is to understand the mechanisms of natural selection in wild populations.  相似文献   

16.
Environmental variability induced by climate change is connected with inter‐annual variation in grain yield of rain‐fed wheat. Density‐dependent cultivars, relying on high populations, usually vary in optimum population. The optimum population is primarily affected by the water regime, while sowing date, heat, terminal drought, frost and type of soil are also indicators. These forces make it difficult to estimate optimum population on the basis of the expected yield level. Furthermore, accounting for the difficulty in foreseeing long‐term weather by variation in the planting versus seeding ratio, an appropriate population might be hard to establish and thus, harvested yield lags behind the highest possible yield. The greater the reliance on high populations, the larger the potential level of this gap and poor yield performance of individual plants is the root cause. Thus, while for drought‐prone environments cultivation at lower populations is prudent, cultivars that fall short of efficient resource capture at the single‐plant level demand much higher populations for seasons with adequate rainfalls. Therefore, flexible density‐independent cultivars performing well at wide range of populations are imperative to meet the future demands in the matter of sustainability and food adequacy. The goal appears attainable through improvement of the single‐plant performance, and the implementation of breeding for yield compensation components offers such a possibility.  相似文献   

17.
Little is known about patterns and correlates of variation in microgametophyte populations for naturally pollinated plants, yet this information is critical for evaluating the prevalence and potential evolutionary significance of gametophyte competition in the wild. This paper analyzes spatial and temporal variation in microgametophyte populations (= number of pollen tubes per style) for the winter-flowering, perennial herb Helleborus foetidus (Ranunculaceae), based on data from 29 populations in three regions of the Iberian Peninsula collected over two consecutive years. Mean size of microgametophyte populations varied significantly at a wide range of spatial scales, including among regions, among populations within regions, among individual plants within populations, among flowers of the same plant, and among pistils of the same flower (H. foetidus flowers are apocarpous). Differences between regions were quantitatively negligible. Differences between populations in the same region were moderate to low, and their sign and magnitude were inconsistent between years. Roughly half of total variance in microgametophyte numbers was accounted for by variation within individual plants, and the largest part of this component was due to differences between the pistils of the same flower. These results reveal extreme spatial fine-graininess and marked stochasticity in the spatial variation of H. foetidus microgametophyte populations and suggest that opportunities for consistent selection on male gametophyte competitive ability are probably negligible in this species.  相似文献   

18.
Desiccation tolerance has evolved recurrently across diverse land plant lineages as an adaptation for survival in regions where seasonal rainfall drives periodic drying of vegetative tissues. Growing interest in this phenomenon has fueled recent physiological, biochemical, and genomic insights into the mechanistic basis of desiccation tolerance. Although, desiccation tolerance is often viewed as binary and monolithic, substantial variation exists in the phenotype and underlying mechanisms across diverse lineages, heterogeneous populations, and throughout the development of individual plants. Most studies have focused on conserved responses in a subset desiccation-tolerant plants under laboratory conditions. Consequently, the variability and natural diversity of desiccation-tolerant phenotypes remains largely uncharacterized. Here, we discuss the natural variation in desiccation tolerance and argue that leveraging this diversity can improve our mechanistic understanding of desiccation tolerance. We summarize information collected from ~600 desiccation-tolerant land plants and discuss the taxonomic distribution and physiology of desiccation responses. We point out the need to quantify natural diversity of desiccation tolerance on three scales: variation across divergent lineages, intraspecific variation across populations, and variation across tissues and life stages of an individual plant. We conclude that this variability should be accounted for in experimental designs and can be leveraged for deeper insights into the intricacies of desiccation tolerance.  相似文献   

19.
Geographical variation in pollinators visiting a plant can produce plant populations adapted to local pollinator environments. We documented two markedly different pollinator climates for the spring ephemeral wildflower Claytonia virginica: in more northern populations, the pollen‐specialist bee Andrena erigeniae dominated, but in more southern populations, A. erigeniae visited rarely and the bee‐fly Bombylius major dominated. Plants in the northern populations experienced faster pollen depletion than plants in southern populations. We also measured divergent pollen‐related plant traits; plants in northern populations produced relatively more pollen per flower and anther dehiscence was more staggered than plants in southern populations. These plant traits might function to increase pollen dispersal via the different pollen vectors.  相似文献   

20.
Local adaptation is central for creating and maintaining spatial variation in plant-herbivore interactions. Short-lived insect herbivores feeding on long-lived plants are likely to adapt to their local host plants, because of their short generation time, poor dispersal, and geographically varying selection due to variation in plant defences. In a reciprocal feeding trial, we investigated the impact of geographic variation in plant secondary chemistry of a long-lived plant, Vincetoxicum hirundinaria, on among-population variation in local adaptation of a specialist leaf-feeding herbivore, Abrostola asclepiadis. The occurrence and degree of local adaptation varied among populations. This variation correlated with qualitative and quantitative differences in plant chemistry among the plant populations. These findings provide insights into the mechanisms driving variation in local adaptation in this specialized plant-herbivore interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号