首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study we investigated the role of external monovalent cations, and of intracellular Ca2+ concentration ([Ca2+]i) in polarized and depolarized rat cerebral cortex synaptosomes on the release of [3H]--aminobutyric acid (3H-GABA). We found that potassium-depolarization, in the absence of Ca2+, of synaptosomes loaded with3H-GABA releases 7.4±2.1% of the accumulated neurotransmitter, provided that the external medium contains Na+, and an additional 19.0±2.5% is released upon adding 1.0 mM CaCl2 to the exterior. The Ca2+-independent release component does not occur in a choline medium and it is only 3.4±0.8% of the3H-GABA accumulated in a Li+ medium, but both ions support the Ca2+-dependent release of3H-GABA (13.4±0.6% in choline and 15.4±1.5% in Li+), which suggests that the exocytotic release is independent of the external monovalent cation present, whereas the carrier-mediated release specifically requires Na+ outside. Furthermore, previous release of the cytosolic3H-GABA due to predepolarization in the absence of Ca2+ does not influence the amount of3H-GABA subsequently released by exocytosis due to Ca2+ addition (19.1±2.5% or 19.1±1.1%, respectively). In choline or Li+ medium, the value of the [Ca2+]i is raised by Na+/Ca2+ exchange to 663±75 nM or 782±54 nM, respectively, within three minutes after adding 1.0 mM Ca2+, in the absence of depolarization, and parallel release experiments show no release of3H-GABA in the choline medium, but a substantial release (7.1±2.1%) of3H-GABA occurs in the Li+ medium without depolarization. Subsequent K+-depolarization shows normal Ca2+-dependent release of3H-GABA in the choline medium (14.1±2.0%) but only 8.6±1.1% release in the Li+ medium, which suggests that raising the [Ca2+]i by Na+/Ca2+ exchange, without depolarization, supports some exocytotic release in Li+, but not in choline media. The role of [Ca2+]i and of membrane depolarization in the release process is discussed on the basis of the results obtained and other relevant observations which suggest that both Ca2+ and depolarization are essential for optimal exocytotic release of GABA.Special issue dedicated to Dr. Santiago Grisolia.  相似文献   

2.
The effect of the putative K+/H+ ionophore, nigericin on the internal Na+ concentration ([Na i ]), the internal pH (pH i ), the internal Ca2+ concentration ([Ca i ]) and the baseline release of the neurotransmitter, GABA was investigated in Na+-binding benzofuran isophtalate acetoxymethyl ester (SBFIAM), 2′,7′-bis(carboxyethyl)-5(6) carboxyfluorescein acetoxymethyl ester (BCECF-AM), fura-2 and [3H]GABA loaded synaptosomes, respectively. In the presence of Na+ at a physiological concentration (147 mM), nigericin (0.5 μM) elevates [Na i ] from 20 to 50 mM, increases thepH i , 0.16 pH units, elevates four fold the [Ca i ] at expense of external Ca2+ and markedly increases (more than five fold) the release of [3H]GABA. In the absence of a Na+ concentration gradient (i.e. when the external Na+ concentration equals the [Na i ]), the same concentration (0.5 μM) of nigericin causes the opposite effect on thepH i (acidifies the synaptosomal interior), does not modify the [Na i ] and is practically unable to elevate the [Ca i ] or to increase [3H]GABA release. Only with higher concentrations of nigericin than 0.5 μM the ionophore is able to elevate the [Ca i ] and to increase the release of [3H]GABA under the conditions in which the net Na+ movements are eliminated. These results clearly show that under physiological conditions (147 mM external Na+) nigericin behaves as a Na+/H+ ionophore, and all its effects are triggered by the entrance of Na+ in exchange for H+ through the ionophore itself. Nigericin behaves as a K+/H+ ionophore in synaptosomes just when the net Na+ movements are eliminated (i.e. under conditions in which the external and the internal Na+ concentrations are equal). In summary care must be taken when using the putative K+/H+ ionophore nigericin as an experimental tool in synaptosomes, as under standard conditions (i.e. in the presence of high external Na+) nigericin behaves as a Na+/H+ ionophore.  相似文献   

3.
Storchak  L.  Tarasenko  A.  Linetska  M.  Pozdnyakova  N.  Himmelreich  N. 《Neurophysiology》2002,34(5):321-325
The main inhibitory neurotransmitter GABA in the mammalian brain is distributed in the nerve terminals between two pools, vesicular (synaptic vesicles) and cytosolic. GABA is released from these pools by different mechanisms; there are calcium-activated exocytotic release and calcium-independent sodium-dependent release from the cytosolic pool (resulting from the membrane GABA transporter reversal). We investigated the influence of temperature on [3H]GABA release from rat brain synaptosomes, which was induced by stimulation of both these processes. In addition, we used -latrotoxin as a stimulant of [3H]GABA release. Synaptosomes from the rat brain were used in the experiments. 4-Aminopyridine (4-AP) and high [KCl] were applied to stimulate calcium-activated and calcium-independent [3H]GABA release, respectively. 4-AP-evoked [3H]GABA release was of the same intensity at 37 and 25°C (10.1 ± 1.2 and 10.1 ± 0.8% of total [3H]GABA incorporated into the synaptosomes, respectively). The effect of 4-AP on the 45Ca2+ influx into synaptosomes was also temperature-independent: 0.775 ± 0.075 and 0.725 ± 0.100 nmol/min/mg of protein at 37 and 25°C, respectively. A drop in the effect of 4-AP was observed only at 15°C. When synaptosomes were depolarized with 50 mM KCl, a temperature decrease from 37°C to 25°C resulted in a twofold drop in the [3H]GABA release, from 20.5 ± 1.4 to 10.3 ± 0.7%; at 15°C [3H]GABA release dropped to less than one-third of the norm (6.0 ± 0.5%). -Latrotoxin-stimulated [3H]GABA release was diminished from 32.5 ± 2.5 at 37°C to 17.2 ± 1.3 at 25°C and 5.9 ± 0.4% at 15°C and was not affected by the presence or absence of calcium in the medium. It seems likely that the observed effect of temperature can be interpreted as based on the temperature dependence of the -latrotoxin insertion into the membrane. It is suggested that the pattern of the temperature sensitivity of GABA release from the synaptosomes can be used as a criterion for identification of the mode of neurotransmitter release.  相似文献   

4.
Extracts of Valeriana officinalis have been used in folkloric medicine for its sedative, hypnotic, tranquilizer and anticonvulsant effects, and may interact with -aminobutyric acid (GABA) and/or benzodiazepine sites. At low concentrations, valerian extracts enhance [3H]flunitrazepam binding (EC50 4.13 × 10–10 mg/ml). However, this increased [3H]flunitrazepam binding is replaced by an inhibition at higher concentrations (IC50 of 4.82 × 10–1 mg/ml). These results are consistent with the presence of at least two different biological activities interacting with [3H]flunitrazepam binding sites. Valerian extracts also potentiate K+ or veratridine-stimulated release of radioactivity from hippocampal slices preloaded with [3H]GABA. Finally, inhibition of synaptosomal [3H]GABA uptake by valerian extracts also displays a biphasic interaction with guvacine. The results confirm that valerian extracts have effects on GABAA receptors, but can also interact at other presynaptic components of GABAergic neurons.  相似文献   

5.
Exogenous tritiated -aminobutiric acid ([3H]GABA) is retained in two compartments in sheep cortex synaptosomes, corresponding to cytoplasmic and vesicular spaces, assuming that freeze-thawing the synaptosomes loaded with [3H]GABA releases the cytoplasmic [3H]GABA (81±3.9%), and that subsequent solubilization of the synaptosomes with 1% sodium cholate releases the vesicular [3H]GABA (19±3.9%). Depolarization of synaptosomes with 40 mM K+ in a Na+-medium, in the absence of Ca2+, releases 20.3±2.7% of the [3H]GABA retained in the synaptosomes. The [3H]GABA released under these conditions comes predominantly from the cytoplasm. The presence of 1 mM Ca2+ during depolarization releases and additional 13% (a total of about 33.5±9.9%) of the releasable [3H]GABA, and the [3H]GABA release which is Ca2+-dependent also comes mostly from the cytoplasmic compartment. When choline replaces external Na+, the [3H]GABA release is absolutely Ca2+-dependent, and the [3H]GABA released also comes mostly from the cytoplasmic pool. Therefore, it appears that [3H]GABA taken up by synaptosomes is accumulated mostly in the cytoplasmic compartment from which it is released upon depolarization. The technique described permits distinguishing the effect of different factors on the two pools of accumulated [3H]GABA.  相似文献   

6.
The effects of spontaneous and evoked [3H]taurine release from a P2 fraction prepared from rat retinas were studied. The P2 fraction was preloaded with [3H]taurine under conditions of high-affinity uptake and then examined for [3H]taurine efflux utilizing superfusion techniques. Exposure of the P2 fraction to high K+ (56 mM) evoked a Ca2+-independent release of [3H]taurine. Li+ (56 mM) and veratridine (100 M) had significantly less effect (8–15% and 15–30%, respectively) on releasing [3H]taurine compared to the K+-evoked release. 4-Aminopyridine (1 mM) had no effect on the release of [3H]taurine. The spontaneous release of [3H]taurine was also Ca2+-independent. When Na+ was omitted from the incubation medium K+-evoked [3H]taurine release was inhibited by approximately 40% at the first 5 minute depolarization period but was not affected at a second subsequent 5 minute depolarization period. The spontaneous release of [3H]taurine was inhibited by 60% in the absence of Na+. Substitution of Br for Cl had no effect on the release of either spontaneous or K+-evoked [3H]taurine release. However, substitution of the Cl with acetate, isethionate, or gluconate decreased K+-evoked [3H]taurine release. Addition of taurine to the superfusion medium (homoexchange) resulted in no significant increase in [3H]taurine efflux. The taurine-transport inhibitor guanidinoethanesulfonic acid increased the spontaneous release of [3H]taurine by approximately 40%. These results suggest that the taurine release of [3H]taurine is not simply a reversal of the carrier-mediated uptake system. It also appears that taurine is not released from vesicles within the synaptosomes but does not rule out the possibility that taurine is a neurotransmitter. The data involving chloride substitution with permeant and impermeant anions support the concept that the major portion of [3H]taurine release is due to an osmoregulatory action of taurine while depolarization accounts for only a small portion of [3H]taurine release.  相似文献   

7.
The roles of the Na+/H+ exchange system in the development and cessation of reperfusion induced ventricular arrhythmias were studied in the isolated perfused rat heart. The hearts were perfused in the working heart mode with modified Krebs Henseleit bicarbonate (KHB) buffer and whole heart ischemia was induced by a one-way ball valve with 330 beat/min pacing. Ischemia was continued for 15 min followed by 20 min of aerobic reperfusion (control). Amiloride (1.0mM), an inhibitor of the Na+/H+ exchange system, was added to the KHB buffer only during reperfusion (group B) or only during ischemic periods (group C). Electrocardiographic and hemodynamic parameters were monitored throughout the perfusion. Coronary effluent was collected through pulmonary artery cannulation and PO2, PCO2, HCO 3 and pH were measured by blood-gas analyzer.The incidence of reperfusion induced ventricular arrhythmias was 100%, 100% and 0% in control, group B and group C, respectively. The mean onset time of termination of reperfusion arrhythmias was significantly shorter in group B than in control. PCO2 increased from 39.0±0.9 to 89.3±6.0 mmHg at the end of ischemia in control and from 40.6±0.4 to 60.5±5.8 in group C, the difference between groups was statistically significant. HCO 3 level decreased from 21.8±0.1 to 18.3±0.5 mmol/l in control, however, this decrease was significantly inhibited in group C (from 22.0±0.5 to 20.3±0.2). The increase in PCO2 and the decrease in HCO 3 in group B were similar over time to those observed in control. The decrease in pH produced by ischemia was marked in control (from 7.35±0.01 to 6.92±0.04) and group B (from 7.34±0.01 to 6.94±0.02), whereas a decrease in pH was significantly prevented in group C (from 7.34±0.01 to 7.15±0.04). There were no significant differences in PCO2, HCO 3 or pH among the three groups during reperfusion.These experiments provide evidence that amiloride significantly prevented the incidence of reperfusion arrhythmias when added only during ischemia and significantly terminated reperfusion arrhythmias when added only during reperfusion. Amiloride may prevent a decrease in pH, due to alterations in PCO2 and/or HCO 3 . These changes in PCO2 and HCO 3 might be indirectly influenced by inhibition of the Na+/H+ exchange system via Cl/HCO 3 exchange. The mechanism by which amiloride terminates reperfusion arrhythmias seems to involve electrophysiological effects which were not directly addressed in this experiment.  相似文献   

8.
9.
10.
11.
12.
The participation of voltage-sensitive Na+ channels (VSSC) on the changes on internal (i) Na+, K+, Ca2+, and on DA, Glu, and GABA release caused by different concentrations of 4-AP was investigated in striatum synaptosomes. TTX, which abolished the increase in Na(i) (as determined with SBFI), induced by 0.1 mM 4-AP only inhibited by 30% the rise in Na(i) induced by 1 mM 4-AP. One millimolar 4-AP markedly decreased the fluorescence of the K+ indicator dye PBFI but 0.1 mM 4-AP did not. Like 1 mM 4-AP, ouabain decreased PBFI fluorescence and increased a considerable fraction of Na(i) in a TTX-insensitive manner. In contrast with the different TTX sensitivity of the rise in Na(i) induced by 0.1 and 1 mM 4-AP, the rise in Ca(i) (as determined with fura-2) induced by the two concentrations of 4-AP was markedly inhibited by TTX, as well as by omega-agatoxin in combination with omega-conotoxin GVIA, indicating that only the TTX-sensitive fraction of the rise in Na(i) induced by 4-AP is linked with the activation of presynaptic Ca2+ channels. It is concluded that the TTX-sensitive fraction of neurotransmitter release evoked by 4-AP is released by exocytosis, and the TTX insensitive fraction involves reversal of the neurotransmitters transporters. This contrasts with the exocytosis evoked by high K+ that is unchanged by TTX and with the neurotransmitter-transporter-mediated release evoked by veratridine, which is highly TTX sensitive and does not require activation of Ca2+ channels.  相似文献   

13.
Although many causal factors have been proposed for the ischemia-reperfusion injury, the exact mechanisms for interdependent derangements of mechanical, electrical and metabolic events remains unclear. For this purpose, the Langendorff-perfused rat hearts were subjected to regional brief ischemia followed by reperfusion to study the protective effects of amiloride, an inhibitor of Na+–H+ exchange. Amiloride (0.1 mM) attenuated the rise in tissue Na+ and Ca2+, both duration and incidence of arrhythmias (p<0.05 vs. control), sarcolemmal injury (assessed by Na–K ATPase) and lipid peroxidation (assessed by malonedialdehyde formation) during reperfusion. Treatment of hearts with monensin, a sodium inophore, reversed the protective effects of amiloride. Reduction in transsarcolemmal Na+ and pH gradients during ischemia exhibited protective effects similar to those seen with amiloride. These results suggest that cardiac dysfunction, sarcolemmal injury and triggered arrhythmias during ischemia-reperfusion are due to the occurrence of intracellular Ca2+ overload caused by the activation of Na+–H+ exchange and Na+–Ca2+ exchange systems in the myocardium.  相似文献   

14.
The involvement of different subtypes of voltage-sensitive Ca2+ channels in the initiation of field stimulation-induced endogenous adenosine triphosphate (ATP) and [3H]acetylcholine ([3H]ACh) release was investigated in the superfused rat habenula slices. ATP, measured by the luciferin-luciferase assay, and [3H]ACh were released simultaneously from the tissue in response to low frequency electrical stimulation (2 Hz, 2.5 msec, 360 shocks). The N-type Ca2+ channel blocker -conotoxin GVIA (-CgTX, 0.01–1 M) reduced the stimulation-evoked release of ATP and [3H]ACh in a dose-dependent manner. Similarly, the P-type Ca2+ channel antagonist -agatoxin IVA (-Aga IVA) (0.05 M) and the inorganic Ca2+ channel blocker Cd2+ (0.2 mM) inhibited the outflow of both transmitters, while Ni2+ (0.1 mM) was without significant effect. A high correlation was observed between the percent inhibition of ATP release and percent inhibition of ACh release caused by the different Ca2+ antagonists. Long-term perfusion (i.e., 90 min) with Ca2+ free solution inhibited the evoked-release of ATP and [3H]ACh. In contrast, perfusion of slices with the same media for a shorter time (i.e., 20 min) did not reduce the release of [3H]ACh and ATP but even increased the evoked-release of ATP about fourfold. The breakdown of extracellular ATP was not blocked under low [Ca2+]0 condition, measured by the creatine phosphokinase assay and HPLC-UV technique. Application of extra- or intracellular Ca2+ chelators, and dipyridamole (2 M), the nucleoside transporter inhibitor, did not reduce the excess release of ATP after short-term perfusion with Ca2+-free media. Tetrodotoxin (TTX, 1 M), while inhibiting the majority of ATP release under normal conditions, was also unable to reduce release under low [Ca2+]0 conditions. In summary, we showed that both N- and P-type Ca2+ channels are involved in the initiation of electrical stimulation-evoked release of ATP and [3H]ACh in the rat habenula under normal extracellular calcium concentration. Under low [Ca2+]0 conditions an additional release of ATP occurs, which is not associated with action potential propagation.  相似文献   

15.
A method which is claimed to be able to determine the proportion of true GABA within radiolabeled GABA used in binding studies was tested using [3H]GABA. The method was found to be unsuitable for3H-labeled GABA and, furthermore, both theoretical considerations and the present experimental data indicated that it could also produce misleading results with [14C]GABA.  相似文献   

16.
[3H]Purine release from rat striatum astrocyte cultures was studied at 14 days in vitro (DIV). Superfusion of cultures with a Ca2+-free medium +0.5 mM ethylene glycol-bis(-aminoethylether)N,N,N,N-tetracetic acid (EGTA) reduced the electrically evoked [3H]purine release. Nimodipine only at the concentration of 10 M modified [3H]purine outflow whereas 0.1 M -conotoxin and 0.03–0.1 M nitrendipine reduced the evoked one. Superfusion of cultures with 0.1 M -conotoxin +0.1 M nitrendipine antagonized the evoked [3H]purine release similarly to each drug given alone. Neither nitrendipine nor -conotoxin influenced the uptake of45Ca2+ by the cultures. The treatment of cells with the Ca2+ agonist Bay K 8644 did not affect [3H]purine release or the45Ca2+ uptake. The drug did not either alter [Ca2+]i, evaluated by loading the cells with 3 M Fura-2/AM. 10–30 M 3,4,5-trimethoxybenzoic acid 8-(diethylamino)octyl ester (TMB-8), a blocker of intracellular Ca2+ discharge, significantly reduced the evoked [3H]purine release. On the other hand, 2 M thapsigargin, an inhibitor of the ion store Ca2+ ATPase, was able to increase either the culture [3H]purine release or the [Ca2+]i. Together, the findings indicate that voltage-sensitive calcium channels (VSCCs) of the neuronal N and L-types are not involved in the modulation of [3H]purine release from rat cultured astrocytes whereas Ca2+ coming from intracytoplasmic stores seems to play a prevailing role. Moreover, agents which block VSCCs seem to be able to affect [3H]purine outflow with mechanisms other than VSCC gating.  相似文献   

17.
We studied the release of [3H]d-aspartate evoked by glutamate receptor agonists from monolayer cultures of chick retina cells, and found that activation of the glutamate receptors can evoke both Ca2+-dependent and Ca2+-independent release of [3H]d-aspartate. In Ca2+-free (no added Ca2+) Na+ medium, the agonists of the glutamate receptors induced the release of [3H]d-aspartate with the following rank order of potency: kainate>α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)∼N-methyl-d-aspartate (NMDA). In media containing 1 mM CaCl2 the release of [3H]d-aspartate evoked by NMDA, kainate and AMPA was increased by about 112%, 20% and 39%, respectively, as compared to the release evoked by the same agonists in Ca2+-free medium. NMDA was the most potent agonist in stimulating the Ca2+-dependent release of [3H]d-aspartate, possibly by exocytosis, and AMPA was as potent as kainate. The Ca2+-dependent release of [3H]d-aspartate evoked by kainate was dependent on the influx of Ca2+ through the receptor associated channel, as well as through the N- (ω-Conotoxin GVIA-sensitive) and L- (nitrendipine-sensitive)type voltage-sensitive Ca2+ channels (VSCC). The exocytotic release of [3H]d-aspartate evoked by AMPA relied exclusively on Ca2+ entry through the L-type VSCC, whereas the effect of NMDA was partially mediated by the influx of Ca2+ through the receptor-associated channel, but not through L- or N-type VSCC. Thus, activation of these different glutamate receptors under physiological conditions is expected to cause the release of cytosolic and vesicular glutamate, and the routes of Ca2+ entry modulating vesicular release may be selectively recruited.  相似文献   

18.
A number of Ca2+-, K+-, and Na+-channel modulators has been tested with respect to their effects on [3H]tyramine (TY) binding, as a putative marker for the vesicular dopamine (DA) transporter in striatal membrane preparations containing vesicle ghosts. Among organic Ca2+-channel modulators, the diphenylalkylamines tested consistently inhibited TY binding: the order of potency was prenylamine>lidoflazine>flunarizine>cinnarizine, with Ki values of 0.1, 0.2, 0.5 and 1.2 M, respectively. Low (up to 100 nM) concentrations of prenylamine did competitively inhibit TY binding, and higher concentrations provoked a mixed-type inhibition. Furthermore, LIGAND-analysis of competition curves revealed a high- and a low-affinity binding site for prenylamine and flunarizine. The TY binding process was also sensitive to selected K+- and Na+-channel modulators. Since several Ca2+-antagonists are known to affect H+-ATPase and the bioenergetics of catecholamine storage vesicles in chromaffin granules, thus affecting monoamine storage, the energy requirements for the formation of the TY/carrier complex were here assessed, assuming similarity between chromaffin granules and synaptic vesicles. TY binding, though not reflecting endovesicle-sequestered TY, was indeed strongly sensitive (with Ki coefficients in the fM or low nM range) to the dissipation of the vesicular transmembrane proton concentration ( pH), electrical ( ), and proton electrochemical ( H+) gradients, provoked by a number of specifically targeted agents. It is concluded that Ca2+-channel agents of the diphenylalkylamine group may directly affect striatal TY binding due to an extrachannel-regulated competition with TY for the vesicular carrier of DA, as well indirectly, by disruption of the transmembrane energization of the reserpine-sensitive carrier.  相似文献   

19.
The effects of the Na+-Ca2+ exchange inhibitor 2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea methanesulfonate (KB-R7943) on depolarization-induced Ca2+ signal and [3H]noradrenaline release were examined in SH-SY5Y cells. KB-R7943 at 10 M significantly inhibited high K+-induced increase in intracellular Ca2+ concentration. KB-R7943 also inhibited high K+-evoked release of [3H]noradrenaline from the cells. These findings suggest that the Na+-Ca2+ exchanger in the reverse mode is involved at least partly in depolarization-induced transmitter release.  相似文献   

20.
The actions of the protonophore CCCP on intracellular Ca2+ regulation and exocytosis in chromaffin cells have been examined. Simultaneous fura-2 imaging and amperometry reveal that exposure to CCCP not only perturbs mitochondrial function but that it also alters vesicular storage of Ca2+ and catecholamines. By disrupting the pH gradient of the secretory vesicle membrane, the protonophore allows both Ca(2+) and catecholamine to leak into the cytosol. Unlike the high cytosolic Ca2+ concentrations resulting from mitochondrial membrane disruption, Ca2+ leakage from secretory vesicles may initiate exocytotic release. In conjunction with previous studies, this work reveals that catalytic and self-sustained vesicular Ca(2+) -induced exocytosis occurs with extended exposure to weak acid or base protonophores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号