首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
水通道蛋白7与脂肪细胞甘油运输   总被引:1,自引:0,他引:1  
水通道蛋白是一类运输水分子的跨膜蛋白,对于调节细胞内外水的平衡具有重要意义。有些水通道蛋白如水通道蛋白7(AQP7)除了运输水分子外,还可运输其他小分子物质,如甘油等,故又被称为水甘油通道蛋白。脂肪细胞中AQP7参与了甘油的跨膜运输而影响脂肪代谢,AQP7的功能下降或缺陷将导致脂肪细胞中甘油释放受阻,脂肪水解减少而积累,最终引起肥胖的发生。AQP7在甘油运输过程中的作用及与脂肪代谢的关系使人们对肥胖的发生机制有了新的理解,从而为肥胖的治疗提供了新的思路。  相似文献   

2.
水通道蛋白是一个具有跨膜运输水分子功能的蛋白家族.其功能受到细胞精细调控,以维持细胞正常的生理状态,水通道蛋白异常将导致相关疾病的发生。重点介绍水通道蛋白在细胞中的调控机理。  相似文献   

3.
昆虫水通道蛋白(Aquaporins,AQPs)是一种膜蛋白,它们是昆虫维持体内水分平衡的必要蛋白,有关它们的研究不断深入。因此,本文对昆虫水通道蛋白的最新研究成果进行了概述,旨在引起人们对该类蛋白的兴趣,以便系统了解和研究该类蛋白。目前研究表明:昆虫典型的AQPs是由250-300个氨基酸残基组成,其分子量在23-35 k Da,包含6个疏水性横跨膜区域、两个NPA结构单元(asparagine-proline-alanine)等。系统发育分析发现:已知昆虫AQPs可分为5大类,分别为DRIP、BIB、PRIP、RPIPs和LHIPs。昆虫AQPs除了运送水分子外,还可以运输其他的一些小分子溶质,如尿素、甘油、海藻糖等。它们还具有组织特异性表达特性,可能在昆虫的多个生理活动中起到重要的作用,因此它们的功能仍需进一步研究证实。此外,昆虫AQPs的深入研究还将会给害虫综合治理提供新的思路。  相似文献   

4.
旨在进行甘草质膜水通道蛋白GuPIP1对水和溶质通透性的鉴定.将GuPIP1全长编码区的cDNA构入非洲爪蟾卵母细胞检测系统的表达栽体psp64 Poly(A),并将体外转录获得GuPI1的cRNA显微注射入卵母细胞,使GuPIP1基因在卵母细胞中表达,通过测定卵母细胞对水和溶质的转运功能来鉴定GuPIP1的转运功能.结果表明,GuPIP1在异源表达系统非洲爪蟾卵母细胞中具水和甘油通透性,但不能转运尿素,为探讨GuPIP1在植株生理中的作用奠定基础.  相似文献   

5.
细胞膜离子通道结构和功能正常是细胞进行生理活动的基础,对离子通道功能具有决定性意义的特定位点的突变导致其开放、关闭或激活、失活功能异常,引起组织机能紊乱,形成各种遗传性疾病。本文从水通道蛋白,钙通道,钠通道,钾通道等多种通道蛋白引起的遗传病的现象以及机理做较深入的阐述。  相似文献   

6.
目前,大量水通道蛋白已在古菌、细菌、真菌、动物和植物中相继被发现,但对于低等植物——藻类水通道蛋白的研究相对较少。藻类与陆地高等植物在生长环境方面存在较大差异,因此其体内存在的水通道蛋白在功能作用机制方面与高等植物会有不同。所有藻类的生长发育过程都与水分传导息息相关,而藻类水通道蛋白不仅仅是水分运输的通道蛋白,同时还具有其他生理生化功能,是一类多功能蛋白。与植物水通道蛋白相比,藻类水通道蛋白的研究起步较晚。在2004年从莱茵衣藻中得到第一个水通道蛋白后,越来越多的研究者开始对藻类体内存在的水通道蛋白产生关注。近年来,在一些藻类全基因组测序完成的基础之上,研究者对藻类水通道蛋白的探索也有了新的进展。迄今为止,已有8个不同亚族的藻类水通道蛋白被确定出来,而且在近两年内,又有研究者从南极冰藻、条斑紫菜和羊栖菜中发现新的藻类水通道蛋白。综述了当前藻类水通道蛋白的分类和结构特征等方面的研究进展,并结合新发现的几种藻类水通道蛋白,阐述了藻类处于胁迫环境时水通道蛋白的特异性表达和所发挥的生理功能,为后续相关藻类水通道蛋白的研究奠定一定的理论基础。  相似文献   

7.
干旱胁迫是严重影响全球作物生产的非生物胁迫之一,研究植物耐旱机制已成为一个重要领域。水通道蛋白是一类特异、高效转运水及其它小分子底物的膜通道蛋白,在植物中具有丰富的亚型,参与调节植物的水分吸收和运输。近10年来,水通道蛋白在植物不同生理过程中的作用,一直受到研究人员的关注,特别是在非生物胁迫方面,而研究表明水通道蛋白在干旱胁迫下对植物的耐旱性起着至关重要的作用,能维持细胞水分稳态和调控环境胁迫快速响应。水通道蛋白在植物耐旱过程中的调控机制及功能较复杂,而关于其应答机制和不同亚型功能性研究的报道甚少。该文综述了植物水通道蛋白的分类、结构、表达调控和活性调节,分别从植物水通道蛋白响应干旱表达调控机制、水通道蛋白基因表达的时空特异性、水通道蛋白基因的表达与蛋白丰度,水通道蛋白基因的耐旱转化四个方面阐明干旱胁迫下植物水通道蛋白的表达,重点阐述其参与植物干旱胁迫应答的作用机制,并提出水通道蛋白研究的主要方向。  相似文献   

8.
植物液泡膜水通道蛋白(tonoplast intrinsic proteins, TIPs)是植物体内水分子和一些小分子溶质跨液泡膜运输的通道。TIPs介导胞内或胞间的水分跨膜运输,在维持植物细胞的水分平衡过程中起着至关重要的作用。由于TIPs特异的定位在液泡膜上,长久以来一直被用作不同植物物种和组织中液泡识别的标记物。本综述介绍了液泡膜水通道蛋白的发现、结构、分类以及亚细胞和组织定位、基因表达和蛋白功能等方面的研究进展,初步探讨了植物液泡膜水通道蛋白研究中存在的问题及今后的研究热点,希望能为相关的科研人员在研究液泡膜定位的水通道蛋白中提供帮助。  相似文献   

9.
水通道蛋白4与脑水肿研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
水通道蛋白4(AQP4)是膜水通道蛋白家族的一员,在脑组织中高表达,是控制水进出脑组织的通道。近年来发现,AQP4的功能和表达与脑水肿密切相关。同时脑水肿又是和脑疾病治疗密切相关的病理过程,对两者的研究或许可以为我们带来更多的临床治疗新思路。本文综述了AQP4的结构、表达、调控与功能以及AQP4与脑水肿关系的研究进展。  相似文献   

10.
目的:分离确认巴斯德毕赤酵母中甘油转运体并初步研究其功能。方法:通过生物信息学方法从NCBI数据库中查找可能的甘油转运体(gt1,GeneID:8197545),并通过DAS软件对其跨膜结构域进行预测。通过PCR方法扩增该基因并将其与EGFP融合克隆到pPICZ B及pRS424载体进行亚细胞定位;同时将其与pRS424载体连接后电转到粟酒裂殖酵母中进行异源表达确定其功能;通过同源重组敲除gt1基因并在不同培养基中培养测定aox1基因表达量。结果:生物信息学显示与酿酒酵母中已经证明的甘油转运体(sugar transporter 1,stl1)类似,GT1蛋白同样为具有疏水结构域的跨膜蛋白,同时亚细胞定位结果显示GT1蛋白定位于细胞膜上,包含有gt1基因的粟酒裂殖酵母可以在以甘油作为唯一碳源的培养基中生长而野生型不可以;在Δgt1突变体中aox1基因可以获得组成型表达。结论:分离并确认了巴斯德毕赤酵母中的甘油转运体GT1,并初步证明其与aox1基因甘油阻遏相关。  相似文献   

11.
In the light of the recently published structure of GlpF and AQP1, we have analysed the nature of the residues which could be involved in the formation of the selectivity filter of aquaporins, glycerol facilitators and aquaglyceroporins. We demonstrate that the functional specificity for major intrinsic protein (MIP) channels can be explained on one side by analysing the polar environment of the residues that form the selective filter. On the other side, we show that the channel selectivity could be associated with the oligomeric state of the membrane protein. We conclude that a non-polar environment in the vicinity of the top of helix 5 could allow aquaglyceroporins and GlpF to exist as monomers within the hydrophobic environment of the membrane.  相似文献   

12.
Three aspects have to be taken into consideration when discussing cellular water and solute permeability of fungal cells: cell wall properties, membrane permeability, and transport through proteinaceous pores (the main focus of this review). Yet, characterized major intrinsic proteins (MIPs) can be grouped into three functional categories: (mainly) water transporting aquaporins, aquaglyceroporins that confer preferentially solute permeability (e.g., glycerol and ammonia), and bifunctional aquaglyceroporins that can facilitate efficient water and solute transfer. Two ancestor proteins, a water (orthodox aquaporin) and a solute facilitator (aquaglyceroporin), are supposed to give rise to today’s MIPs. Based on primary sequences of fungal MIPs, orthodox aquaporins/X-intrinsic proteins (XIPs) and FPS1-like/Yfl054-like/other aquaglyceroporins are supposed to be respective sister groups. However, at least within the fungal kingdom, no easy functional conclusion can be drawn from the phylogenetic position of a given protein within the MIP pedigree. In consequence, ecophysiological prediction of MIP relevance is not feasible without detailed functional analysis of the respective protein and expression studies. To illuminate the diverse MIP implications in fungal lifestyle, our current knowledge about protein function in two organisms, baker’s yeast and the Basidiomycotic Laccaria bicolor, an ectomycorrhizal model fungus, was exemplarily summarized in this review. MIP function has been investigated in such a depth in Saccharomyces cerevisiae that a system-wide view is possible. Yeast lifestyle, however, is special in many circumstances. Therefore, L. bicolor as filamentous Basidiomycete was added and allows insight into a very different way of life. Special emphasis was laid in this review onto ecophysiological interpretation of MIP function.  相似文献   

13.
14.
The vestibule loop regions of aquaglyceroporins are involved in accumulation of glycerol inside the channel pore. Even though most loop regions do not show high sequence similarity among aquaglyceroporins, loop E is highly conserved in aquaglyceroporins, but not in members of the homologous aquaporins. Specifically, a tryptophan residue is extremely conserved within this loop. We have investigated the role of this residue (Trp219) that deeply protrudes into the protein and potentially interacts with adjacent loops, using the E. coli aqualgyeroporin GlpF as a model. Replacement of Trp219 affects the activity of GlpF and impairs the stability of the tetrameric protein. Furthermore, we have identified an amino acid cluster involving Trp219 that stabilizes the GlpF tetramer. Based on our results we propose that Trp219 is key for formation of a defined vestibule structure, which is crucial for glycerol accumulation as well as for the stability of the active GlpF tetramer.  相似文献   

15.
The Major Intrinsic Proteins are found throughout the bacterial, plant, and animal kingdoms and are responsible for the rapid transport of water and other small, polar solutes across membranes. The superfamily includes the aquaporins, the aquaglyceroporins, and the glycerol facilitators. We have overexpressed and purified the Escherichia coli inner membrane glycerol facilitator. Approximately 7.5 mg of 95% pure protein is obtained from 1 L of Escherichia coli cells using immobilized metal affinity chromatography. Well-resolved matrix-assisted laser desorption ionization mass spectra were obtained by solubilization of the protein in octyl-beta-D-glucopyranoside (M(r) = 33 650.3; error approximately 0.4%). The recombinant glycerol facilitator is inserted into the bacterial inner membrane, is functional, and is inhibited by HgCl(2). Polyacrylamide gel electrophoresis suggests that the facilitator is predominantly monomeric when solubilized with dodecyl-beta-D-maltoside, octyl-beta-D-glucopyranoside, and sodium dodecyl sulfate, but that it self-associates, forming soluble oligomers when urea is used during extraction. Similar oligomeric species are demonstrated to exist in the bacterial membrane by chemical cross-linking experiments. Circular dichroism analysis shows that the protein is predominantly alpha-helical. Helix content is significantly higher in protein prepared in the absence of urea (42-55%) than in its presence (32%). A possible role for the facilitator oligomers in interactions with, and regulation of, the glycerol kinase is discussed.  相似文献   

16.
Aquaporins facilitate water permeation across biological membranes. Additionally, glycerol and other small neutral solutes are permeated by related aquaglyceroporins. The role of aquaporins in gas permeation has been a long-standing and controversially discussed issue. We present an extensive set of atomistic molecular dynamics simulations that address the question of CO(2) permeation through human aquaporin-1. Free energy profiles derived from the simulations display a barrier of approximately 23 kJ/mol in the aromatic/arginine constriction region of the water pore, whereas a barrier of approximately 4 kJ/mol was observed for a palmitoyloleoylphosphatidylethanolamine lipid bilayer membrane. The results indicate that significant aquaporin-1-mediated CO(2) permeation is to be expected only in membranes with a low intrinsic CO(2) permeability.  相似文献   

17.
Aquaporins are channels that allow the movement of water across the cell membrane. Some members of the aquaporin family, the aquaglyceroporins, also allow the transport of glycerol, which is involved in the biosynthesis of triglycerides and the maintenance of fasting glucose levels. Aquaporin-7 (AQP7) is a glycerol channel mainly expressed in adipocytes. The deletion of AQP7 gene in mice leads to obesity and type 2 diabetes. AQP7 modulates adipocyte glycerol permeability thereby controlling triglyceride accumulation and fat cell size. Furthermore, the coordinated regulation of fat-specific AQP7 and liver-specific AQP9 may be key to determine glucose metabolism in insulin resistance.  相似文献   

18.
Trypanosoma brucei, causative for African sleeping sickness, relies exclusively on glycolysis for ATP production. Under anaerobic conditions, glucose is converted to equimolar amounts of glycerol and pyruvate, which are both secreted from the parasite. As we have shown previously, glycerol transport in T. brucei occurs via specific membrane proteins (Wille, U., Schade, B., and Duszenko, M. (1998) Eur. J. Biochem. 256, 245-250). Here, we describe cloning and biochemical characterization of the three trypanosomal aquaglyceroporins (AQP; TbAQP1-3), which show a 40-45% identity to mammalian AQP3 and -9. AQPs belong to the major intrinsic protein family and represent channels for small non-ionic molecules. Both TbAQP1 and TbAQP3 contain two highly conserved NPA motifs within the pore-forming region, whereas TbAQP2 contains NSA and NPS motifs instead, which are only occasionally found in AQPs. For functional characterization, all three proteins were heterologously expressed in yeast and Xenopus oocytes. In the yeast fps1Delta mutant, TbAQPs suppressed hypoosmosensitivity and rendered cells to a hyper-osmosensitive phenotype, as expected for unregulated glycerol channels. Under iso- and hyperosmotic conditions, these cells constitutively released glycerol, consistent with a glycerol efflux function of TbAQP proteins. TbAQP expression in Xenopus oocytes increased permeability for water, glycerol and, interestingly, dihydroxyacetone. Except for urea, TbAQPs were virtually impermeable for other polyols; only TbAQP3 transported erythritol and ribitol. Thus, TbAQPs represent mainly water/glycerol/dihydroxyacetone channels involved in osmoregulation and glycerol metabolism in T. brucei. This function and especially the so far not investigated transport of dihydroxyacetone may be pivotal for the survival of the parasite survival under non-aerobic or osmotic stress conditions.  相似文献   

19.
Wallace IS  Roberts DM 《Biochemistry》2005,44(51):16826-16834
Major intrinsic proteins (MIPs) are a diverse class of integral membrane proteins that facilitate the transport of water and some small solutes across cellular membranes. X-ray structures of MIPs indicate that a tetrad of residues (the ar/R region) form a narrow pore constriction that constitutes the selectivity filter. In comparison with mammalian and microbial species, plants have a greater number and diversity of MIPs with greater than 30 genes encoding four phylogenetic subfamilies with eight different classes of ar/R sequences. The nodulin 26-like intrinsic protein (NIP) subfamily in Arabidopsis can be subdivided into two ar/R subgroups: the NIP subgroup I, which resembles the archetype of the family, soybean nodulin 26, and the NIP subgroup II, which is represented by the Arabidopsis protein AtNIP6;1. These two NIPs differ principally by the substitution of a conserved alanine (NIP subgroup II) for a conserved tryptophan (NIP subgroup I) in the helix 2 position (H2) of the ar/R filter. A comparison of the water and solute tranport properties of the two proteins was performed by expression in Xenopus laevis oocytes. Nodulin 26 is an aquaglyceroporin with a modest osmotic water permeability (P(f)) and the ability to transport uncharged solutes such as glycerol and formamide. In constrast, AtNIP6;1 showed no measurable water permeability but transported glycerol, formamide, as well as larger solutes that were impermeable to nodulin 26. By site-directed mutagenesis, we show that the H2 position is the crucial determinant that confers these transport behaviors. A comparison of the NIPs and tonoplast-intrinsic proteins (TIP) shows that the H2 residue can predict the transport profile for water and glycerol with histidine found in TIP-like aquaporins, tryptophan found in aquaglyceroporins (NIP I), and alanine found in water-impermeable glyceroporins (AtNIP6;1).  相似文献   

20.
The discovery of aquaporin (AQP) has made a great impact on life sciences. AQPs are a family of homologous water channels widely distributed in plants, unicellular organisms, invertebrates, and vertebrates. So far, 13 AQPs have been identified in human. AQP3, 7, 9, and 10 are subcategorized as aquaglyceroporins which permeabilize glycerol as well as water. Many investigators have demonstrated that AQPs play a crucial role in maintaining water homeostasis, but the physiological significance of some AQPs as a glycerol channel is not fully understood. Adipose tissue is a major source of glycerol and glycerol is one of substrates for gluconeogenesis. This review focuses on recent studies of glycerol metabolism through aquaglyceroporins, and briefly discusses the importance of glycerol channel in adipose tissues and liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号