首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyanide is formed as a co-product of ethylene during the oxidation of 1-aminocyclo-propane-1-carboxylic acid (ACC) catalyzed by ACC oxidase. A toxic or regulatory function for cyanide in plant metabolism remains controversial. However, recent studies on the mode of action of auxin herbicides in sensitive plants suggest that the accumulation of tissue cyanide, derived ultimately from herbicide-stimulated ACC synthesis, is implicated in the induction of herbicide phytotoxicity. Furthermore, increases in cyanide levels have been observed during the formation of necrotic lesions in tobacco mosaic virus-infected tobacco leaves. It thus appears worthwhile to elucidate in more detail a possible role for cyanide in the induction of cell death under stress conditions which coincide with a strong stimulation of ethylene biosynthesis.  相似文献   

2.
Greenhouse bioassays were set up using a small pot test method to determine the intrinsic sensitivity of different plant species to sulcotrione and mesotrione applied in a sandy loam soil. Herbicides were applied over an appropriate concentration range. After a 2-3 week test period, foliage fresh weight was determined. Data were subjected to a non-lineair regression analysis. Using the regression equations, ED50-values (herbicide concentrations that cause 50 percent foliage fresh weight reduction) were calculated for each combination of crop species and herbicide. To determine which replacement crops might be grown in case of failure of a crop treated with one of these herbicides, field persistence experiments were conducted over the 1993-2003 period for sulcotrione and the 1998-2003 period for mesotrione at the Experimental Farm, Biocentre Agri-Vet, Ghent University at Melle. Herbicides were applied in spring (about mid-March) on a bare soil; untreated control strips were included. Replacement crops were sown or planted approximately five weeks after herbicide applications. Visual estimations of crop injury were recorded at several intervals from sowing and fresh matter yield of plant parts was determined. Based on these data, crops were ranked according to their degree of sensitivity to either sulcotrione or mesotrione. Maize is very tolerant to both herbicides, although in some years, temporary injury could be seen in the field experiments. Italian rye-grass and fibre flax are tolerant crops; in field experiments a slight, temporary injury could be noticed in some years. Winter wheat displayed a high degree of tolerance to mesotrione (in both experiment types): however this crop was less tolerant to sulcotrione especially in the bioassay experiment. Based on its ED50-value, black salsify is tolerant to sulcotrione but under field conditions, the selectivity of this herbicide is quite variable; tolerance to mesotrione is moderate. Turnip and witloof chicory are clearly sensitive to mesotrione and sulcotrione whereas sugar beet, red clover and lettuce are extremely sensitive to both herbicides in both experiment types. Bioassays and field experiments provide a detailed and complete information about soil activity and persistence of both herbicides.  相似文献   

3.
Triasulfuron forms one of the group of sulfonylurea herbicides. These are used widely for controlling weeds as they are effective at very low application rates. This effectiveness is responsible for the crop losses due to persistence of trace amounts of the herbicides (≤100 pg/g) in the soil. The numerous immunoassays described have been constrained by the fact that the soil extract contains co extractants which interfere in the assays, so much so, that these assays are useless at low levels of herbicide. We describe here the preparation and application of an immunoaffinity column which binds specifically to triasulfuron, thus cleaning up the soil extract. The experiment design is such that this also leads to concentration of the triasulfuron, making it easier to assay reliably using ELISA. Six different soil types were used to validate this procedure. In most cases, the herbicide content could be detected at 100 pg/g (critical phytotoxic herbicide level in soil) with a variation of ±20% in the readings.  相似文献   

4.
The effects of temperature, over a range of 5 to 30 C, on phytotoxicity of simazine, atrazine, propazine, prometryne, prometone, and ipazine to young Pinus resinosa seedlings were investigated in growth chambers. Herbicides were applied to the soil surface and then mixed into the soil before pine seeds were planted. Development of recently germinated seedlings was then studied for 7 weeks. High temperatures greatly accelerated herbicide toxicity, but the effects of temperature varied greatly among herbicides. Atrazine and simazine were more toxic than other herbicides tested at all temperatures. Toxicity of simazine and atrazine was apparent early, whereas effects of propazine, prometryne, prometone, and ipazine were somewhat delayed. After 7 weeks maximum dry-weight production of shoots under each herbicide treatment and control occurred at 20 C, with some decreases noted at lower temperatures and marked decreases at progressively higher ones. At 20 C final seedling dry weights following treatment with simazine or atrazine were only one-third as high as in control plants. Growth was also reduced in lesser amounts by propazine, prometryne, prometone, or ipazine. Variations in phytotoxicity of different triazine herbicides appeared to be related more to their structural differences than their solubilities. Under the constant environmental conditions of the experiments, toxicity symptoms in plants treated with triazine herbicides appeared more rapidly and decisively than in previous field experiments under fluctuating environments. The influence of high temperatures in enhancing triazine toxicity appeared to involve complex interactions of physiological activity of plants and temperature effects on herbicide uptake.  相似文献   

5.
化学除草剂对农田生态系统野生植物多样性的影响   总被引:3,自引:0,他引:3  
农田生物多样性是全球生物多样性的重要组成部分, 除草剂的大量施用对其产生了严重影响。本文综述了化学除草剂对农田生态系统中野生植物多样性的影响, 并分析归纳了其影响机制。除草剂的施用会使敏感植物减少, 抗药性植物增多, 从而改变农田生态系统中的野生植物物种组成, 并使其趋同化, 降低遗传多样性和物种多样性, 以致植物功能群单一化, 群落稳定性下降。除草剂的主要影响机制是杀死植物或改变其生长代谢、抗性、繁殖等, 改变生境, 并与人为因素、环境因素等产生协同影响。不同种类的除草剂影响程度不同, 且不同物种间、不同群落间的响应也存在差异。我国化学除草剂使用量持续增长, 应加强除草剂对野生植物多样性的影响及其机制研究, 重视除草剂使用历史记录和野生植物的长期监测, 以及除草剂使用规范和相关政策法律研究, 更好地保护我国农田生态系统中的生物多样性。  相似文献   

6.
Summary The uptake of five herbicides by the dead roots of six plant species was investigated and it is concluded that the process involved was probably adsorption. The adsorptive capacity of the dry matter of roots was lower than soil organic matter but was of a similar order of magnitude. It is suggested that in some cases adsorption might provide a significant pathway by which herbicides are taken up by the living plant. It seems unlikely that adsorption by roots will normally exert much influence on the herbicide concentration in the soil solution.  相似文献   

7.
Summary Algal techniques were used to study the soil factors affecting the toxicity of herbicides. It was found that the organic matter adsorbed 18 times more herbicide than clay. The inherent phytotoxicity of different herbicides was tested by these methods and the results obtained compared favourably to those of higher plants. The order of toxicity as tested by algae was: diuron >neburon>monuron>atrazine>simazine>atratone. The prediction of application rates of diuron and simazine by algal methods was tested in the field with wheat as cereal crop. The data obtained testified that the predictions were correct and better than the commercial recommendation. Good chemical control of weeds was achieved by herbicide at the early stage of crop growth. At later stages of crop development the toxicity of the chemical was reduced to insignificance and the crop plants were then capable to compete successfully against the emerging weeds. Thus a biological weed control was obtained. Such combined chemical-biological weed control technique should be regarded as the most desirable practice in agriculture.  相似文献   

8.
Herbicide-resistant plants can be generated by either traditional breeding procedures or genetic engineering. Analyses of plant responses to a newly developed herbicide or the tolerance level of a newly developed plant line to a given herbicide are based on various bioassays. Here, we describe several methods for quantitative measurements of plants' responses to propham application, as a model herbicide of the carbamate family. Dose-response assays include seed germination and analyses of shoot and root elongation on paper. To better reflect the natural interaction between the plant, the soil and the herbicide, a protocol for germination and root elongation on sand is described. Finally, a more sensitive bioassay is based on plant growth on agar medium. The described protocols are simple, reproducible and can be easily adopted for a variety of plant species and for various herbicides. Plants' response to a given herbicide can be determined within a few weeks.  相似文献   

9.
除草剂在桉树人工林中的应用越来越普遍,但关于除草剂对桉树人工林林下植物和土壤微生物群落的影响知之甚少。通过桉树人工林低剂量高频率(LHF)、中剂量中频率(MMF)、高剂量低频率(HLF)除草剂喷施试验,并与人工除草(MT)为对照,比较分析不同剂量、不同频率除草剂施用对林下植物和土壤微生物群落的影响。结果表明,施用除草剂导致桉树人工林林下植物种类和功能群组成发生显著变化,但并未显著降低林下植物群落物种丰富度和多样性,随除草剂施用频率的降低及恢复时间的增加,物种丰富度及多样性指数呈恢复趋势。除草剂施用也导致土壤养分含量降低。除草剂通过对林下植物群落和土壤养分的负面影响间接影响土壤微生物群落。LHF显著降低藤本植物而显著提高蕨类植物功能群的重要值,从而显著降低了微生物群落、真菌和放线菌的磷脂脂肪酸(PLFA)含量。MMF显著降低木本和藤本植物而显著提高禾草植物功能群的重要值,导致土壤微生物群落和放线菌的PLFA含量显著降低。HLF未显著影响林下植物及土壤微生物群落,但土壤全磷含量显著降低,速效磷含量也大幅下降。施用除草剂显著降低了土壤微生物生物量碳、氮的含量。因此,生产上应减少除草剂的施用,...  相似文献   

10.
Herbicides are detected year-round in marine waters, including those of the World Heritage listed Great Barrier Reef (GBR). The few previous studies that have investigated herbicide persistence in seawater generally reported half-lives in the order of months, and several studies were too short to detect significant degradation. Here we investigated the persistence of eight herbicides commonly detected in the GBR or its catchments in standard OECD simulation flask experiments, but with the aim to mimic natural conditions similar to those found on the GBR (i.e., relatively low herbicide concentrations, typical temperatures, light and microbial communities). Very little degradation was recorded over the standard 60 d period (Experiment 1) so a second experiment was extended to 365 d. Half-lives of PSII herbicides ametryn, atrazine, diuron, hexazinone and tebuthiuron were consistently greater than a year, indicating high persistence. The detection of atrazine and diuron metabolites and longer persistence in mercuric chloride-treated seawater confirmed that biodegradation contributed to the breakdown of herbicides. The shortest half-life recorded was 88 d for growth-regulating herbicide 2,4-D at 31°C in the dark, while the fatty acid-inhibitor metolachlor exhibited a minimum half-life of 281 d. The presence of moderate light and elevated temperatures affected the persistence of most of the herbicides; however, the scale and direction of the differences were not predictable and were likely due to changes in microbial community composition. The persistence estimates here represent some of the first appropriate data for application in risk assessments for herbicide exposure in tropical marine systems. The long persistence of herbicides identified in the present study helps explain detection of herbicides in nearshore waters of the GBR year round. Little degradation of these herbicides would be expected during the wet season with runoff and associated flood plumes transporting a high proportion of the original herbicide from rivers into the GBR lagoon.  相似文献   

11.
Applications of cellulose xanthate equivalent to 25 kg cellulose/ha increased the numbers of weed seedlings by up to 23% compared with untreated controls. With propachlor and prynachlor, weed control was poorer in the presence of cellulose xanthate and analyses of soil samples demonstrated that the rate of herbicide loss from the soil was enhanced. Although the soil conditioner increased the rate of loss of some other acetanilide herbicides, weed control was not greatly affected. The results suggest that interactions between cellulose xanthate and acetanilide herbicides are only important with those compounds which are normally of very short persistence.  相似文献   

12.
不同除草剂的田间杂草防效及对糜子生长发育的影响   总被引:1,自引:0,他引:1  
筛选糜子适宜除草剂来防范农田药害,是糜子高效安全生产和改善生态环境亟待解决的关键问题。本研究以粳性糜子品种‘榆糜2号'为材料,探究22种除草剂对糜子田间杂草的防除效果及对糜子生长发育的影响。结果表明: 1)喷施土壤封闭型除草剂谷友、丁草胺、莠去津、苄嘧·丙草胺和茎叶型除草剂苯唑·二甲钠、阔世玛、藤净、陶氏·优先、阔菲后,基本无药害作用,糜子幼苗生长正常,其余除草剂均对糜子有不同程度的药害影响;2)参试的22种除草剂在糜子田中对杂草均表现出一定的防除效果,总体而言,土壤封闭型除草剂的杂草防效相对优于茎叶型除草剂,但所有参试除草剂对糜子株高、功能叶片叶绿素含量、单株穗重均造成不同程度的影响;3)与人工除草相比,参试除草剂均导致糜子产量有不同程度的下降;但与不除草对照相比,部分除草剂有明显的增产增效作用。土壤封闭型除草剂中,谷友、丁草胺、莠去津、苄嘧·丙草胺的杂草防效较好,较不除草对照增产60%以上;茎叶型除草剂中,阔世玛、苯唑·二甲钠的杂草防效较好,较不除草对照增产50%以上。因此,在糜子出苗前可用38%莠去津或44%单嘧磺隆进行土壤封闭处理,或在出苗后喷施茎叶型除草剂3.6%二磺·甲碘隆或55%苯唑·二甲钠,农田杂草防效较好,且对糜子生长发育的负面影响较小。  相似文献   

13.
Non-target organisms are globally exposed to herbicides. While many herbicides – for example, glyphosate – were initially considered safe, increasing evidence demonstrates that they have profound effects on ecosystem functions via altered microbial communities. We provide a comprehensive framework on how herbicide residues may modulate ecosystem-level outcomes via alteration of microbiomes. The changes in soil microbiome are likely to influence key nutrient cycling and plant–soil processes. Herbicide-altered microbiome affects plant and animal performance and can influence trophic interactions such as herbivory and pollination. These changes are expected to lead to ecosystem and even evolutionary consequences for both microbes and hosts. Tackling the threats caused by agrochemicals to ecosystem functions and services requires tools and solutions based on a comprehensive understanding of microbe-mediated risks.  相似文献   

14.
Restoration of native plant communities through direct seeding often experience low seedling establishment success rates, partly due to competition with invasive weed species. To improve seeding success, herbicides can be applied to control weed competition, however, this can have negative impacts on the seeded species. Activated carbon (AC) can be incorporated into newly developed seed enhancement technologies to adsorb herbicides and increase seedling tolerance. This study expands upon research completed to date, by developing new formulations of extruded pellets containing AC, aiming to provide increased protection to seeded species and increase herbicide selectivity. We tested six extruded pellet formulations, which included two pellet formula variations, and three quantities of AC, to examine the impact on emergence (without herbicide) and mortality (with herbicide) of Lolium rigidum Gaudin (annual ryegrass). Extruded pellet formulations containing a superabsorbent polymer (3%) and AC (10%) did not impede emergence (79%), in the absence of herbicide, similar to the non‐pelleted seeds (81%). This extruded pellet formulation increased seedling tolerance to Simazine (a pre‐emergent, soil applied herbicide) application, with mortality reduced from 96% in non‐pelleted seeds, and 77% in pellets containing no AC, to 22% in pellets containing AC. The results from this study demonstrate that AC extruded pelleting can be used as a restoration seeding technology by protecting seeds from the negative effects of pre‐emergent herbicide applications. Field evaluations with native seeds will mark an important step forward to ensure seed enhancement technology options, such as AC extruded pelleting, are available for restoring natural plant communities in restoration programs.  相似文献   

15.
Various indicators of pesticide environmental risk have been proposed, and one of the most widely known and used is the environmental impact quotient (EIQ). The EIQ has been criticized by others in the past, but it continues to be used regularly in the weed science literature. The EIQ is typically considered an improvement over simply comparing the amount of herbicides applied by weight. Herbicides are treated differently compared to other pesticide groups when calculating the EIQ, and therefore, it is important to understand how different risk factors affect the EIQ for herbicides. The purpose of this work was to evaluate the suitability of the EIQ as an environmental indicator for herbicides. Simulation analysis was conducted to quantify relative sensitivity of the EIQ to changes in risk factors, and actual herbicide EIQ values were used to quantify the impact of herbicide application rate on the EIQ Field Use Rating. Herbicide use rate was highly correlated with the EIQ Field Use Rating (Spearman’s rho >0.96, P-value <0.001) for two herbicide datasets. Two important risk factors for herbicides, leaching and surface runoff potential, are included in the EIQ calculation but explain less than 1% of total variation in the EIQ. Plant surface half-life was the risk factor with the greatest relative influence on herbicide EIQ, explaining 26 to 28% of the total variation in EIQ for actual and simulated EIQ values, respectively. For herbicides, the plant surface half-life risk factor is assigned values without any supporting quantitative data, and can result in EIQ estimates that are contrary to quantitative risk estimates for some herbicides. In its current form, the EIQ is a poor measure of herbicide environmental impact.  相似文献   

16.
Risk assessment for non-target plants is based on single species phytotoxicity tests. This approach may not reflect relevant ecological processes in terrestrial ecosystems. The current risk assessment scheme is based on endpoints measured at the species level and the assessment of ecological effects relies on the extrapolation from one species to another or from a single species to a community. This extrapolation contains many uncertainties that may be reduced by adopting more realistic testing approaches. However, currently higher-tier plant studies are not obligatory in herbicide risk assessment. We reviewed the published literature and found that potential higher-tier approaches for terrestrial non-target plants are extremely limited. Sixteen studies were found that assessed the effects of herbicides on non-target plants by performing microcosms, mesocosms, or field studies. These studies showed that microcosms might provide useful data and help to reduce uncertainties associated with single-species tests. However, due to the limited number of available studies, much work is required to develop appropriate testing methods for regulatory processes. In addition, field experiments are necessary to establish baseline knowledge concerning the effects of herbicides on natural plant communities and to compare data generated in tiered testing approaches with data obtained from natural systems.  相似文献   

17.
R Busi  M M Vila-Aiub  S B Powles 《Heredity》2011,106(5):817-824
The dynamics of herbicide resistance evolution in plants are influenced by many factors, especially the biochemical and genetic basis of resistance. Herbicide resistance can be endowed by enhanced rates of herbicide metabolism because of the activity of cytochrome P450 enzymes, although in weedy plants the genetic control of cytochrome P450-endowed herbicide resistance is poorly understood. In this study we have examined the genetic control of P450 metabolism-based herbicide resistance in a well-characterized Lolium rigidum biotype. The phenotypic resistance segregation in herbicide resistant and susceptible parents, F1, F2 and backcross (BC) families was analyzed as plant survival following treatment with the chemically unrelated herbicides diclofop-methyl or chlorsulfuron. Dominance and nuclear gene inheritance was observed in F1 families when treated at the recommended field doses of both herbicides. The segregation values of P450 herbicide resistance phenotypic traits observed in F2 and BC families was consistent with resistance endowed by two additive genes in most cases. In obligate out-crossing species such as L. rigidum, herbicide selection can easily result in accumulation of resistance genes within individuals.  相似文献   

18.
Mounting concerns regarding the environmental impact of herbicides has meant a growing requirement for accurate, timely information regarding herbicide residue contamination of, in particular, aquatic systems. Conventional methods of detection remain limited in terms of practicality due to high costs of operation and the specialised information that analysis provides. A new phytotoxicity bioassay was trialled for the detection of herbicide residues in filter-purified (Milli-Q) as well as natural waters. The performance of the system, which combines solid-phase extraction (SPE) with the ToxY-PAM dual-channel yield analyser (Heinz Walz GmbH), was tested alongside the traditional method of liquid chromatography-mass spectrometry (LC-MS). The assay methodology was found to be highly sensitive (LOD 0.1 ng L(-1) diuron) with good reproducibility. The study showed that the assay protocol is time effective and can be employed for the aquatic screening of herbicide residues in purified as well as natural waters.  相似文献   

19.
A glasshouse experiment was conducted to investigate the effect of soil pH on chickpea (Cicer arietinum) tolerance to isoxaflutole applied pre-emergence at 0, 75 (recommended rate) and 300 g a.i. ha−1. For this study, the variables examined were two desi chickpea genotypes (97039-1275 as a tolerant line and 91025-3021 as a sensitive line) and four pH levels (5.1, 6.9, 8.1, and 8.9). The results demonstrated differential tolerances among chickpea genotypes to isoxaflutole at different rates and soil pH levels. Isoxaflutole applied pre-emergence resulted in increased phytotoxicity with increases in soil pH and herbicide rate. Even the most tolerant chickpea genotype was damaged when exposed to higher pH and herbicide rates, as indicated by increased leaf chlorosis and significant reductions in plant height, and shoot and root dry weight. The effects were more severe with the sensitive genotype. The susceptibility of chickpea to this herbicide depends on genotype and soil pH which should be taken into account in breeding new lines, and in the agronomy of chickpea production.  相似文献   

20.
Quinate (1,3,4,5-tetrahydroxycyclohexanecarboxylate) is a compound synthesized in plants through a side branch of the shikimate biosynthesis pathway. Plants treated with herbicides that inhibit amino acid biosynthesis (branched-chain and aromatic) accumulate quinate in their leaves. The objective of this study was to evaluate whether quinate mimics the effects of herbicides in plants. In pea plants, exogenous application of quinate through the nutrient solution was compared with leaf spraying at a concentration of 4 and 400 mM, respectively, and evaluated in parallel to the effects of herbicides. The analysis facilitated an assessment of the phytotoxicity and potential use of quinate as a natural herbicide. The application of quinate through the nutrient solution, but not the spray, was lethal, although both treatments affected plant growth. Quinate was absorbed and translocated to other plant organs remote from the application site, and an increase in the levels of aromatic amino acids and caffeic acid (that is, compounds located after quinate in the shikimate biosynthesis pathway) was detected, which indicates that quinate was metabolized and incorporated into the shikimate pathway. Exogenous application of quinate affected the carbohydrate content in the leaves and roots in a way similar to the toxic effects of herbicides. The phytotoxic effects of quinate reported in this study suggest that this compound deregulates the shikimate pathway and mimics some physiological effects described in the mode of action of herbicides inhibiting amino acid biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号