首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chlorogenic acid possessed a weak caffeine-like psychostimulant property when assessed for its effect on spontaneous locomotor activity in mice. In the evaluation of the effects for the major metabolites of chlorogenic acid which were detected upon incubation with rat feces and/or excreted in urine after oral administration to rats, caffeic and m-coumaric acids were found to be the principal active metabolites, while the others contributed little to this caffeine-like psychostimulant activity.  相似文献   

2.
Methylphenidate (MPH), a psychostimulant that affects both dopaminergic and noradrenergic systems, is one of the most frequently prescribed treatments for attention-deficit hyperactivity disorder. The present study investigated the effects of chronic administration of MPH on some parameters of oxidative stress, as well as on butyrylcholinesterase (BuChE) activity in blood of young rats. Rats received intraperitoneal injections of MPH (2.0 mg/kg) once a day, from the 15th to the 45th day of age or an equivalent volume of 0.9% saline solution (controls). Two hours after the last injection, animals were euthanized, and blood was collected. Results demonstrated that MPH did not alter the dichlorofluorescein formed, decreased both thiobarbituric acid reactive substances and total non-enzymatic radical-trapping antioxidant, and increased superoxide dismutase and catalase activities, suggesting that this psychostimulant may alter antioxidant defenses. BuChE activity was increased in blood of juvenile rats subjected to chronic MPH administration. These findings suggest that MPH may promote peripheral oxidative adaptations and cholinergic changes.  相似文献   

3.
It has been of interest to determine whether the metabolites of physiological doses of retinoic acid represent active forms of vitamin A. Previous work (Biochem. J. 206, 33-41, 1982) studied the metabolites produced from 2-micrograms doses of all-trans-retinoic acid in the vitamin A-deficient rat. Four major metabolites common to all of the tissues studied were discovered. In the present work, three of these metabolites are isolated from vitamin A-deficient rats given physiological doses (5 micrograms) of all-trans-retinoic acid and from vitamin A-sufficient rats given high doses (1 mg) of all-trans-retinoic acid. Cochromatography on anion-exchange and reverse-phase high-performance liquid chromatography showed that metabolites resulting from high doses of retinoic acid contained the metabolites generated from physiological doses of retinoic acid. Quantities of these metabolites were isolated, purified, and tested for their epithelial-differentiating activity in the vitamin A-deficient rat vagina. The metabolites were inactive at all dose levels tested. These metabolites have less than 10% the biological activity of all-trans-retinoic acid. Therefore, these metabolites appear to be products of the inactivation of all-trans-retinoic acid. Based upon these and previous data, it seems likely that all-trans-retinoic acid or its beta-glucuronide derivative is the most likely active form of vitamin A in the maintenance of normal epithelial differentiation.  相似文献   

4.
Renal microsomal cytochrome P-450-dependent arachidonic acid metabolism was correlated with the level of cytochrome P-450 in the rabbit kidney. Cobalt, an inducer of haem oxygenase, reduced cytochrome P-450 in both the cortex and medulla in association with a 2-fold decrease in aryl-hydrocarbon hydroxylase, an index of cytochrome P-450 activity, and a similar decrease in the formation of cytochrome P-450-dependent arachidonic acid metabolites by renal microsomes (microsomal fractions). Formation of the latter was absolutely dependent on NADPH addition and was prevented by SKF-525A, an inhibitor of cytochrome P-450-dependent enzymes. Arachidonate metabolites of cortical microsomes were identified by g.c.-m.s. as 20- and 19-hydroxyeicosatetraenoic acid, 11,12-epoxyeicosatrienoic acid and 11,12-dihydroxyeicosatrienoic acid. The profile of arachidonic acid metabolites was the same for the medullary microsomes. Induction of cytochrome P-450 by 3-methylcholanthrene and beta-naphthoflavone increased cytochrome P-450 content and aryl-hydrocarbon hydroxylase activity by 2-fold in the cortex and medulla, and this correlated with a 2-fold increase in arachidonic acid metabolites via the cytochrome P-450 pathway. These changes can also be demonstrated in cells isolated from the medullary segment of the thick ascending limb of the loop of Henle, which previously have been shown to metabolize arachidonic acid specifically via the cytochrome P-450-dependent pathway. The specific activity for the formation of arachidonic acid metabolites by this pathway is higher in the kidney than in the liver, the highest activity being in the outer medulla, namely 7.9 microgram as against 2.5 micrograms of arachidonic acid transformed/30 min per nmol of cytochrome P-450 for microsomes obtained from outer medulla and liver respectively. These findings are consistent with high levels of cytochrome P-450 isoenzyme(s), specific for arachidonic acid metabolism, primarily localized in the outer medulla.  相似文献   

5.
A quantitative pharmaco-EEG analysis of the action of psychostimulant drug sydnocarb and its solvent polyethylenglycol-400 on bioelectrical activity of sensomotor cortex, dorsal hippocamp and lateral hypothalamus of wakeful rats in free behavior was carried out. Polyethylenglycol-400 proved to affect CNS, as it decreases slow-wave activity and causes displacement of the dominant peak to the region of more slow-wave frequencies, shows anticonvulsant action. Sydnocarb reduces absolute power of all frequency ranges and increases relative power of fast activity. It is concluded that sydnocarb increases in optimal limits the level of CNS vigilance which may underlie a psychostimulant action of the drug eventuating into optimization of behavioral functions, increasing physical and mental capacity for work.  相似文献   

6.
We have examined the effect of glucose and caffeine inhibition on the activity of liver glycogen phosphorylase a from the freeze-tolerant frog Rana sylvatica. Kinetic studies indicate that this enzyme exhibits similar sensitivity to glucose inhibition (glucose dissociation constant = 12.5 mM) as the mammalian enzyme. Little inhibition (less than 25%) was observed at normal glucose concentrations (1-5 mM), while significant inhibition (60-95%) occurred at glucose concentrations (50-500 mM) present in freezing-exposed animals. These results favour the hypothesis that in the normal state glucose regulates phosphorylase activity primarily through the promotion of dephosphorylation of phosphorylase a, whereas during freezing regulation is achieved through phosphorylase a inactivation. The caffeine dissociation constant (0.93 mM) and the degree of synergism between caffeine and glucose (interaction factor, alpha = 0.14) were also similar to that observed for the mammalian enzyme. Hence, if a caffeine-like ligand exists in vivo, it must be in low enough amounts during freezing to allow sufficient phosphorylase a activity for high glucose production.  相似文献   

7.
Metabolites of hydrocortisone were isolated from rat liver on a preparative scale, fractionated by column chromatography on Sephadex Lh-20 and silica gel and tested for biological activity. Apart from the well known neutral metabolites, steroid glucuronides and sulfates, we obtained metabolite fractions containing non-conjugated steroidal carboxy acids and acid metabolites of unknown structure. One of these fractions induced tyrosine aminotransferase (EC 2.6.1.5) in adrenalectomized female rats but not tryptophan oxygenase (EC 1.13.11.11), whereas another one mainly increased activity of tryptophan oxygenase. The doses necessary to significantly induce both enzymes were much lower in case of these metabolites than in the case of hydrocortisone itself. The active fractions eluting from silica gel column were analyzed by thin-layer chromatography in two different solvent systems. Absence of hydrocortisone in these fractions could be clearly demonstrated. Furthermore, the active fractions eluting from the silica gel column were characterized by treatment with an extract from Helix pomatia and/or diazomethane and subsequent analysis by thin-layer chromatography. We conclude, considering the biological activity of some synthesized derivatives of hydrocortisone, that the biologically active components are acid metabolites of hydrocortisone which are not identical to any of the known metabolites.  相似文献   

8.
The antioxidative activities of (?)-epigallocatechin gallate (EGCg) metabolites degraded by rat intestinal flora were investigated by a flow injection analysis coupled to an on-line antioxidant detection system with the 2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical cation. All of the metabolites were found to have antioxidative activity, suggesting that the EGCg metabolites may show antioxidative activity in the body.  相似文献   

9.
The antioxidative activities of (-)-epigallocatechin gallate (EGCg) metabolites degraded by rat intestinal flora were investigated by a flow injection analysis coupled to an on-line antioxidant detection system with the 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical cation. All of the metabolites were found to have antioxidative activity, suggesting that the EGCg metabolites may show antioxidative activity in the body.  相似文献   

10.
Gambogic acid (GBA), the main component of Gamboge, possesses significant anti-tumour activity. Due to its structural complexity, little is known about GBA metabolism. Here, we investigate the metabolism of GBA in vivo in rat bile. Identification of the metabolites formed was elucidated using high-performance liquid chromatography (HPLC) with UV-vis detection, HPLC/ion trap electrospray ionization-mass spectrometry, as well as HPLC/nuclear magnetic resonance. Four main metabolites were determined. Two phase I metabolites, 10-hydroxygambogic acid and 9,10-epoxygambogic acid, were oxides on the 9,10-olefinic bond of GBA. The others phase II metabolites, were 9,10-epoxygambogic acid-30-O-glucuronide and 10-hydroxylgambogic acid-30-O-glucuronide.  相似文献   

11.
Metabolites of hydrocortisone were isolated from rat liver on a preparative scale, fractionated by column chromatography on Sephadex LH-20 and silica gel and tested for biological activity. Apart from the well known neutral metabolites, steroid glucuronides and sulfates, we obtained metabolite fractions containing non-conjugated steroidal carboxy acids and acid metabolites of unknown structure. One of these fractions induced tyrosine aminotransferase (EC 2.6.1.5) in adrenalectomized female rats but not trptophan oxygenase (EC 1.13.11.11), whereas another one mainly increased activity of tryptophan oxygenase. The doses necessary to significantly induce both enzymes were much lower in case of these metabolites than in the case of hydrocortisone itself. The active fractions eluting from silica gel column were analyzed by thin-layer chromatography in two different solvent systems. Absence of hydrocortisone in these fractions could be clearly demonstrated. Furthermore, the active fractions eluting from the silica gel column were characterized by treatment with an extract from Helix pomatia and/or diazomethane and subsequent analysis by thin-layer chromatography. We conclude, considering the biological activity of some synthesized derivatives of hydrocortisone, that the biologically active components are acid metabolites of hydrocortison which are not identical to any of the known metabolites.  相似文献   

12.
Summary Human diploid fibroblasts were cultured on microcarriers made from DEAE-dextran, denatured collagen, DEAE-dextran linked to denatured collagen, and glass. Cells grown on these four substrates were examined for the production of proteolytic enzymes and arachidonic acid metabolites. Culture fluids from cells grown on the DEAE-dextran microcarriers contained the highest amounts of proteolytic enzyme activity. Both plasminogen-independent and plasminogen-dependent fibrinolytic activities were present and the plasminogen-dependent activity seemed to result from the presence of both urokinase and tissue plasminogen activator. Culture fluid from the cells grown on the glass microcarriers contained the least amount of protease activity, and nearly all of the plasminogen-activator activity seemed to be of the urokinase type. Protease activity in the culture fluids of cells grown on the other two substrates were intermediate. With regard to arachidonic acid metabolites, cells grown on the DEAE-dextran microcarriers produced the highest amounts of cyclooxygenase products but very low levels of lipoxygenase metabolites. Cells grown on the other three substrates produced comparable amounts of various cyclooxygenase products (lower than that produced by cells on the DEAE-dextrans substrate). Cells grown on the glass microcarriers also produced detectable amounts of two lipoxygenase metabolites—leukotriene B4 and leukotriene C4. Inasmuch as both proteolytic enzymes and arachidonic acid metabolites regulate basic cell properties, the differential amount of these metabolites observed in the culture fluids on the various substrates may contribute to the biological differences that exist on these substrates. This study was supported in part by grants R44 CA 36656 and IK08HL01332-01 from the Public Health Service, U. S. Department of Health and Human Services and by grant BC-512 from the American Cancer Society. JDH is a research fellow of the American Lung Association.  相似文献   

13.
From the metabolism of H-Ala-Arg-Pro-Ala-Lys-OH, four metabolites, H-Pro-Ala-Lys-OH, H-Arg-Pro-Ala-Lys-OH, H-Ala-Arg-Pro-OH, and H-Ala-Arg-Pro-Ala-OH were identified. In order to find a new lead compound of thrombolytic peptide, 3S-1,2,3,4-tetrahydro-beta-carboline-3-carboxylic acid was introduced to the N- and C-terminal of the metabolites by use of the common coupling strategy. Under this condition, the pseudopeptides (5a-d and 7a-d) were obtained with a good yield. The thrombolytic activities of 3S-1,2,3,4-tetrahydro-beta-carboline-3-carboxylic acid containing oligopeptides were evaluated in vitro and in vivo. The result indicated that the thrombolytic activity of the pseudopeptide depended on the sequence and the modification pattern of the metabolites, and only when 3S-1,2,3,4-tetrahydro-beta-carboline-3-carboxylic acid was introduced into the C-terminal of H-Pro-Ala-Lys-OH or H-Arg-Pro-Ala-Lys-OH, the desirable thrombolytic activity was retained and enhanced significantly.  相似文献   

14.
Antifungal metabolites produced by Bacillus pumilus in Potato Dextrose Broth (PDB) were isolated from culture supernatant fluid by precipitation with ammonium sulphate. The antifungal metabolites inhibited mycelial growth of many species of Aspergillus , Penicillium and Fusarium . They also inhibited production of aflatoxins, cyclopiazonic acid, ochratoxin A and patulin. The metabolites were heat-stable and remained active after sterilization at 121 °C for 15 min. Their activity was stable over a wide range of pH (2–10). The metabolites were resistant to hydrolysis by various proteases, peptidases and other enzymes. They were also resistant to denaturation by many protein-denaturing detergents except Nonidet P-40. The metabolites were soluble in water and relatively polar organic solvents. Chromatographic bioassay revealed that a crude precipitate of the metabolites contained only one compound with antifungal activity. The active compound did not form a fluorescent derivative with fluorescamine suggesting that the compound is either a cyclic polypeptide or a non-peptidic compound.  相似文献   

15.
6种植物次生物质对斜纹夜蛾解毒酶活性的影响   总被引:2,自引:0,他引:2  
草食性昆虫取食植物时遇到宿主植物中大量次生物质的化学防御,研究昆虫适应植物毒素的反防御策略具有重要的科学意义。分别添加0.01%肉桂酸、0.01%水杨酸、0.01%花椒毒素、0.02%槲皮素、0.05%黄酮和0.1%香豆素等6种植物次生物质的人工饲料饲养斜纹夜蛾(Spodoptera litura)五龄幼虫48 h后,测定斜纹夜蛾幼虫中肠和脂肪体中谷胱甘肽S-转移酶(GSTs)、羧酸酯酶(CarE)、P450的酶含量及头部乙酰胆碱酯酶(AChE)的活性,利用半定量RT-PCR检测中肠和脂肪体中CYP4M14和CYP4S9的基因表达水平。结果表明:取食肉桂酸和香豆素后,斜纹夜蛾中肠中CarE的酶活性分别提高了1.67和1.37倍,取食6种次生物质均能显著提高斜纹夜蛾脂肪体中GSTs酶活性。取食肉桂酸和香豆素48 h后,脂肪体中P450酶含量比对照增加2.93和14.50倍。取食肉桂酸、花椒毒素、槲皮素和香豆素后,斜纹夜蛾头部AchE酶活性与对照相比提高了1.53、1.80、2.36和1.56倍。6种次生物质均可诱导脂肪体中CYP4M14基因表达,槲皮素、肉桂酸和香豆素强烈诱导CYP4S9在脂肪体中表达。表明,斜纹夜蛾具有利用植物次生物质诱导其解毒酶的能力,进而提高其对毒素的抗性。  相似文献   

16.
d-Limonene enhanced bile flow in rats and dogs with a dose response correlation. The choleretic activity was much higher in the metabolites of d-limonene such as p-mentha-1,8-dien-10-ol, p-menth-1-ene-8,9-diol and p-mentha-1,8-dien-6-ol than d-limonene, and this suggested that the choleretic activity of d-limonene was attributable at least in part to its metabolites.The choleretic activities of esters of p-menth-1-ene-8,9-diol with acetic acid, propionic acid, stearic acid, palmitic acid, linoleic acid, benzoic acid, salicylic acid, α-naphthylacetic acid and nicotinic acid were also investigated in rats. Among these compounds, acetate, propionate and nicotinate possessed considerable, but lesser activities than the original diol. In dogs, however, the choleretic activity of p-menth-l-ene-8,9-diol acetate and propionate was much higher than that of original diol, suggesting that the choleretic activity of these esters is attributable to the esters themselves.d-Limonene decreased the ratio of biliary bile salts and phospholipids to cholesterol, whereas p-menth-l-ene-8,9-diol increased it.  相似文献   

17.
Selenium is an essential component of glutathione peroxidase, which reduces free and esterified hydroperoxides of polyunsaturated fatty acids. Adequate glutathione peroxidase activity could be important for the maintenance of prostacyclin synthesis by blood vessels, since hydroperoxides can inhibit the formation of this substance. We have investigated the effects of dietary selenium deficiency on glutathione peroxidase activity and the synthesis of 6-oxoprostaglandin F1 alpha and monohydroxy and trihydroxy metabolites of polyunsaturated fatty acids by aorta. The latter products can be formed either by the actions of cyclooxygenase or lipoxygenase or by lipid peroxidation. Aortic glutathione peroxidase activity was reduced by over 80% by feeding rats a selenium-deficient diet for 4 weeks, and to undetectable levels after 6 weeks. There were no appreciable differences in the levels of free and esterified oxygenated metabolites of linoleic acid or arachidonic acid between the control and treated groups after 4 weeks. However, after 6 weeks, there were modest, but statistically significant reductions in the formation of 6-oxoprostaglandin F1 alpha and monohydroxy products formed by cyclooxygenase. On the other hand, the amounts of esterified 18:2 metabolites appeared to be higher in aortae from animals on the selenium-deficient diet, although only the increase in esterified 9-hydroxy-10,12-octadecadienoic acid was statistically significant. These results suggest that selenium deficiency can affect the formation of prostacyclin and other oxygenated metabolites of polyunsaturated fatty acids by aorta, possibly by increasing lipid peroxidation. However, the differences between control and selenium-deficient rats after 6 weeks were not very dramatic, in spite of the fact that glutathione peroxidase activity was undetectable. It would therefore appear that additional mechanisms are also involved in controlling the levels of lipid hydroperoxides in aorta.  相似文献   

18.
Single doses of DL-alpha-amino-beta-(2-pyridine)propanoic acid (2-PA, 100 mg/kg) significantly decreased the holoenzyme and apoenzyme activities of rat liver tryptophan pyrrolase (TP) and increased brain tryptophan, serotonin (5-HT) and 5-hydroxyindole-3-ylacetic acid concentrations. 2-PA had no inhibitory effect on either of the enzyme activities in vitro, but its expected metabolites were effective. Single doses of DL-alpha-amino-beta-(3-pyridine)propanoic acid (3-PA, 100 mg/kg) decreased only the holoenzyme activity and elevated brain tryptophan and its metabolites levels in rats. 3-PA and its metabolite, 3-pyridylpyruvate, inhibited only the holoenzyme activity in vitro. DL-alpha-Amino-beta-(4-pyridine)propanoic acid (4-PA) caused significant changes in liver TP (holo- and apoenzyme forms) activity and brain tryptophan concentration only after repeated administration (100 mg/kg/day). 4-PA was a weak inhibitor of the holoenzyme, but its metabolites apparently inhibited the holo- and apoenzyme activities in vitro. These findings suggest that PA analogs (and/or their metabolites) increased brain tryptophan (and hence 5-HT synthesis) by directly inhibiting liver TP activity.  相似文献   

19.
Epidemiological studies have indicated a positive association between the intake of foods rich in anthocyanins and the protection against cardiovascular diseases. Some authors have shown that anthocyanins are degraded by the gut microflora giving rise to the formation of other breakdown metabolites, which could also contribute to anthocyanin health effects. The objective of this study was to evaluate the effects of anthocyanins and their breakdown metabolites, protocatechuic, syringic, gallic, and vanillic acids, on different parameters involved in atherosclerosis, including inflammation, cell adhesion, chemotaxis, endothelial function, estrogenic/anti-estrogenic activity, and angiotensin-converting enzyme (ACE) inhibitory activity. From the assayed metabolites, only protocatechuic acid exhibited a slight inhibitory effect on NO production and TNF-α secretion in LPS-INF-γ-induced macrophages. Gallic acid caused a decrease in the secretion of MCP-1, ICAM-1, and VCAM-1 in endothelial cells. All anthocyanins showed an ACE-inhibitory activity. Delphinidin-3-glucoside, pelargonidin-3-glucoside, and gallic acid showed affinity for ERβ and pelargonidin and peonidin-3-glucosides for ERα. The current data suggest that anthocyanins and their breakdown metabolites may partly provide a protective effect against atherosclerosis that is multi-causal and involves different biochemical pathways. However, the concentrations of anthocyanins and their metabolites, as used in the present cell culture and in vitro assays mediating anti-inflammatory, anti-adhesive, anti-estrogenic, and angiotensin-converting enzyme inhibitory activities, were often manifold higher than those physiologically achievable.  相似文献   

20.
Tobacco transformants that express an antisense RBCS construct were used to investigate the consequences of a lesion in photosynthetic carbon metabolism for nitrogen metabolism and secondary metabolism. The results show that an inhibition of photosynthesis and decrease in sugar levels leads to a general inhibition of nitrogen metabolism, and dramatic changes in the levels of secondary metabolites. The response was particularly clear in plants that received excess nitrogen. In these conditions, a decrease of Rubisco activity led to an inhibition of nitrate reductase activity, accumulation of nitrate, a decrease of amino acid levels that was larger than the decrease of sugars, and a large decrease of chlorogenic acid and of nicotine, which are the major carbon- and nitrogen-rich secondary metabolites in tobacco leaves, respectively. Similar changes were seen when nitrogen-replete wild-type tobacco was grown in low light. The inhibition of nitrogen metabolism was partly masked when wild-type plants and antisense RBCS transformants were compared in marginal or in limiting nitrogen, because the lower growth rate of the transformants alleviated the nitrogen deficiency, leading to an increase of amino acids. In these conditions, chlorogenic acid always decreased but the decrease of nicotine was ameliorated or reversed. When the changes in internal pools are compared across all the genotypes and growth conditions, two conclusions emerge. First, decreased levels of primary metabolites lead to a dramatic decrease in the levels of secondary metabolites. Second, changes of the amino acid : sugar ratio are accompanied by changes of the nicotine:chlorogenic acid ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号