首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Identification of the major intestinal fatty acid transport protein.   总被引:7,自引:0,他引:7  
While intestinal transport systems for metabolites such as carbohydrates have been well characterized, the molecular mechanisms of fatty acid (FA) transport across the apical plasmalemma of enterocytes have remained largely unclear. Here, we show that FATP4, a member of a large family of FA transport proteins (FATPs), is expressed at high levels on the apical side of mature enterocytes in the small intestine. Further, overexpression of FATP4 in 293 cells facilitates uptake of long chain FAs with the same specificity as enterocytes, while reduction of FATP4 expression in primary enterocytes by antisense oligonucleotides inhibits FA uptake by 50%. This suggests that FATP4 is the principal fatty acid transporter in enterocytes and may constitute a novel target for antiobesity therapy.  相似文献   

2.
TraJ is the essential activator of P(Y), the promoter of the F and F-like plasmid tra operon that encodes the majority of the proteins for bacterial conjugation. By combining error-prone PCR mutagenesis with a two-plasmid screen, we isolated 55 missense mutations in traJ, each affecting the ability of TraJ to activate P(Y). These mutations define two distinct functional clusters (amino acids [aa] 21 to 117 and aa 150 to 219). Limited proteolytic analysis of TraJ suggested that the N- and C-terminal functional clusters are two structurally distinct domains. Most TraJ mutants exhibited decreased intracellular protein levels, and the HslVU protease-chaperone pair was found to be responsible for degrading those mutants without extracytoplasmic stress-induced overexpression. In vivo cross-linking analysis of TraJ mutants indicated that the N-terminal domain is responsible for dimerization. This was confirmed by the finding that the purified N-terminal region of TraJ forms dimers in solution. The levels of dimerization and in vivo activities of TraJ mutants are well correlated, suggesting that dimerization of TraJ is required for its biological function. We propose that the regulation of TraJ dimerization and/or its susceptibility to HslVU could be a key mechanism in various signaling processes for controlling bacterial conjugation in response to physiological or environmental stimuli.  相似文献   

3.
Alanine scanning mutagenesis was performed on the red clover necrotic mosaic virus (RCNMV) movement protein (MP), and 12 mutants were assayed in vitro for RNA binding characteristics and in vivo for their ability to potentiate RCNMV cell-to-cell movement. The mutant phenotypes that were identified in vitro and in vivo suggest both that cooperative RNA binding is not necessary for cell-to-cell movement in vivo and that only a fraction of the wild-type RNA binding may be required. The MP mutants defined at least three distinct functional regions in the MP: an RNA binding domain, a cooperative RNA binding domain, and a third domain that is necessary for cell-to-cell movement in vivo. This third domain may be required for targeting the MP to cell walls and plasmodesmata, interacting with host proteins, folding, or possibly binding RNA into a functional ribonucleoprotein complex capable of cell-to-cell movement.  相似文献   

4.
Fatty acid transport proteins (FATP) function in fatty acid trafficking pathways, several of which have been shown to participate in the transport of exogenous fatty acids into the cell. Members of this protein family also function as acyl CoA synthetases with specificity towards very long chain fatty acids or bile acids. These proteins have two identifying sequence motifs: The ATP/AMP motif, an approximately 100 amino acid segment required for ATP binding and common to members of the adenylate-forming super family of proteins, and the FATP/VLACS motif that consists of approximately 50 amino acid residues and is restricted to members of the FATP family. This latter motif has been implicated in fatty acid transport in the yeast FATP orthologue Fat1p. In the present studies using a yeast strain containing deletions in FAT1 (encoding Fat1p) and FAA1 (encoding the major acyl CoA synthetase (Acsl) Faa1p) as an experimental platform, the phenotypic and functional properties of specific murine FATP1-FATP4 and FATP6-FATP4 protein chimeras were evaluated in order to define elements within these proteins that further distinguish the fatty acid transport and activation functions. As expected from previous work FATP1 and FATP4 were functional in the fatty acid transport pathway, while and FATP6 was not. All three isoforms were able to activate the very long chain fatty acids arachidonate (C(20:4)) and lignocerate (C(24:0)), but with distinguishing activities between saturated and highly unsaturated ligands. A 73 amino acid segment common to FATP1 and FATP4 and between the ATP/AMP and FATP/VLACS motifs was identified by studying the chimeras, which is hypothesized to contribute to the transport function.  相似文献   

5.
Characterization of a heart-specific fatty acid transport protein   总被引:9,自引:0,他引:9  
Fatty acids are a major source of energy for cardiac myocytes. Changes in fatty acid metabolism have been implicated as causal in diabetes and cardiac disease. The mechanism by which long chain fatty acids (LCFAs) enter cardiac myocytes is not well understood but appears to occur predominantly by protein-mediated transport. Here we report the cloning, expression pattern, and subcellular localization of a novel member of the fatty acid transport protein (FATP) family termed FATP6. FATP6 is principally expressed in the heart where it is the predominant FATP family member. Similar to other FATPs, transient and stable transfection of FATP6 into 293 cells enhanced uptake of LCFAs. FATP6 mRNA was localized to cardiac myocytes by in situ hybridization. Immunofluorescence microscopy of FATP6 in monkey and murine hearts revealed that the protein is exclusively located on the sarcolemma. FATP6 was restricted in its distribution to areas of the plasma membrane juxtaposed with small blood vessels. In these membrane domains FATP6 also colocalizes with another molecule involved in LCFA uptake, CD36. These findings suggest that FATP6 is involved in heart LCFA uptake, in which it may play a role in the pathogenesis of lipid-related cardiac disorders.  相似文献   

6.
Ubiquitin carrier proteins (E2s) are involved in the covalent attachment of ubiquitin to a variety of cellular target proteins in eukaryotes. Here, we report the cloning of genes from wheat and Arabidopsis thaliana that encode 16-kDa E2s and a domain analysis of E2s by in vitro mutagenesis. The genes for E216kDa, which we have designated wheat and At UBC1, encode proteins that are only 33% identical (58% similar) with a 23-kDa E2 from wheat (encoded by the gene now designated wheat UBC4), but are 63% identical (82% similar) with the E2 encoded by the Saccharomyces cerevisiae DNA repair gene, RAD6. Unlike the proteins encoded by RAD6 and wheat UBC4, the UBC1 gene products lack acidic C-terminal domains extending beyond the conserved core of the proteins and are incapable of efficient in vitro ligation of ubiquitin to histones. From enzymatic analysis of the UBC1 and UBC4 gene products mutagenized in vitro, we have identified several domains important for E2 function, including the active site cysteine and N-terminal and C-terminal domains. Cysteine residues 88 and 85 in the UBC1 and UBC4 gene products, respectively, are necessary for formation of the ubiquitin-E2 thiol ester intermediate. Whereas the UBC1 gene product does not require its additional cysteine residue at position 116 for thiol ester formation, alteration of cysteine 143 in the UBC4 gene product greatly diminishes this ability. The N terminus of UBC1 contains two domains that affect activity: a proximal region containing hydroxylated and uncharged residues whose removal increases the rate of thiol ester formation and a distal tract rich in basic residues. Deletion or substitution of these basic residues with neutral residues diminishes the rate of thiol ester formation. We have demonstrated also that C-terminal extensions can function to confer substrate specificity to E2s. When the acidic extension was deleted from UBC4, the protein was unable to efficiently conjugate ubiquitin to histones in vitro. Furthermore, fusion of the UBC4 acidic extension to the C terminus of UBC1 resulted in a chimeric protein capable of efficient histone conjugation, as did fusion of short tracts of alternating aspartate and glutamate residues. This result suggests that the target protein specificity of E2s can be altered by the addition of appropriate C-terminal extensions, thus providing a way to modify the selectivity of the ubiquitin system.  相似文献   

7.
The extrinsic 12 kDa protein in red algal photosystem II (PSII) functions to minimize the chloride and calcium requirement of oxygen-evolving activity [Enami et al. (1998) Biochemistry 37: 2787]. In order to identify functional domains of the 12 kDa protein, we prepared the 12 kDa protein lacking N-terminal peptides or C-terminal peptides or both by limited proteolysis and directed mutagenesis. The resulting 12 kDa protein fragments were examined for their binding and functional properties by reconstitution experiments. (1) A peptide fragment from Gly-6 to C-terminus of the 12 kDa protein was prepared by V8 protease. This fragment rebound to PSII completely, and it reactivated oxygen evolution partially in the absence of Cl(-) and Ca(2+) ions but significantly in the presence of Cl(-) ion. (2) A peptide from Leu-10 to Phe-83 was obtained by chymotrypsin treatment. This peptide rebound to PSII effectively, but the rebinding did not restore oxygen evolution in both the absence and presence of Cl(-) and Ca(2+) ions. (3) Two mutant proteins, one lacking five residues and the other lacking nine residues of the N-terminus, were able to bind to PSII effectively. Recovery of oxygen evolution by their binding was almost the same as that reconstituted with the V8 protease-treated peptide. (4) Three mutant proteins lacking ten, seven or three residues of the C-terminus effectively rebound to PSII, but their binding did not result in recovery of the oxygen evolution. In contrast, reconstitution with a mutant protein lacking one residue of the C-terminus showed the same high restoration of oxygen evolution as reconstitution with the full-length 12 kDa protein. (5) These results indicate that two residues from lysine of the C-terminus of the 12 kDa protein constitute an important domain for minimizing the chloride and calcium requirement of oxygen evolution. In addition, the N-terminus of the protein, at least five residues, has a secondary function for the chloride requirement.  相似文献   

8.
The murine fatty acid transport protein (FATP) facilitates uptake of long chain fatty acids (LCFAs) when expressed in mammalian cells. FATP's sequence contains a highly conserved motif, IYTSGTTGXPK, also found in a number of proteins known to interact with ATP. To explore the role of this motif, we independently mutated the central serine (serine 250) and threonine (threonine 252) residues in this motif and assessed the effects of these mutations on FATP function. When expressed in fibroblasts, the FATP mutants demonstrated impaired LCFA import and impaired binding of [alpha-32P]8-azido-ATP (azido-ATP) compared with wild-type FATP. These results suggest that serine 250 and threonine 252 are critical for FATP function and that the mechanism of action of FATP involves nucleotide binding which is dependent on these residues.  相似文献   

9.
The identification of protein-protein interaction networks has often given important information about the functions of specific proteins and on the cross-talk among metabolic and regulatory pathways. The availability of entire genome sequences has rendered feasible the systematic screening of collections of proteins, often of unknown function, aimed to find the cognate ligands. Once identified by genetic and/or biochemical approaches, the interaction between two proteins should be validated in the physiologic environment. Herein we describe an experimental strategy to screen collections of protein-protein interaction domains to find and validate candidate interactors. The approach is based on the assumption that the overexpression in cultured cells of protein-protein interaction domains, isolated from the context of the whole protein, could titrate the endogenous ligand and, in turn, exert a dominant negative effect. The identification of the ligand could provide us with a tool to check the relevance of the interaction because the contemporary overexpression of the isolated domain and of its ligand could rescue the dominant negative phenotype. We explored this approach by analyzing the possible dominant negative effects on the cell cycle progression of a collection of phosphotyrosine binding (PTB) domains of human proteins. Of 47 PTB domains, we found that the overexpression of 10 of them significantly interfered with the cell cycle progression of NIH3T3 cells. Four of them were used as baits to identify the cognate interactors. Among these proteins, CARM1, interacting with the PTB domain of RabGAP1, and EF1alpha, interacting with RGS12, were able to rescue the block of the cell cycle induced by the isolated PTB domain of the partner protein, thus confirming in vivo the relevance of the interaction. These results suggest that the described approach can be used for the systematic screening of the ligands of various protein-protein interaction domains also by using different biological assays.  相似文献   

10.
In an attempt to identify high affinity, fatty acid binding proteins present in 3T3-L1 adipocytes plasma membranes, we labeled proteins in purified plasma membranes with the photoreactive fatty acid analogue, 11-m-diazirinophenoxy[11-3H]undecanoate. A single membrane protein of 22 kDa was covalently labeled after photolysis. This protein fractionated with caveolin-1 containing caveolae and was immunoprecipitated by an anti-caveolin-1 monoclonal antibody. Furthermore, 2D-PAGE analysis revealed that both the alpha and beta isoforms of caveolin-1 could be labeled by the photoreactive fatty acid upon photolysis, indicating that both bind fatty acids. The saturable binding of the photoreactive fatty acid suggests caveolin-1 has a lipid binding site that may either operate during intracellular lipid traffic or regulate caveolin-1 function.  相似文献   

11.
The Escherichia coli SeqA protein, a negative regulator of chromosomal DNA replication, prevents the overinitiation of replication within one cell cycle by binding to hemimethylated G-mA-T-C sequences in the replication origin, oriC. In addition to the hemimethylated DNA-binding activity, the SeqA protein has a self-association activity, which is also considered to be essential for its regulatory function in replication initiation. To study the functional domains responsible for the DNA-binding and self-association activities, we performed a deletion analysis of the SeqA protein and found that the N-terminal (amino acid residues 1-59) and the C-terminal (amino acid residues 71-181) regions form structurally distinct domains. The N-terminal domain, which is not involved in DNA binding, has the self-association activity. In contrast, the C-terminal domain, which lacks the self-association activity, specifically binds to the hemimethylated G-mA-T-C sequence. Therefore, two essential SeqA activities, self-association and DNA-binding, are independently performed by the structurally distinct N-terminal and C-terminal domains, respectively.  相似文献   

12.
Fasciola hepatica adult flukes have a native protein complex denoted nFh12 and consisting of fatty acid binding proteins that comprise at least 8 isoforms. It is a potent immunogen because in several animal hosts it induces an early antibody response to F. hepatica infection. It is also a potent cross-protective immunogen because it induces a protective immune response in mice to challenge infection with Schistosoma mansoni cercariae. The gene encoding this protein has been cloned and sequenced. It produces a polypeptide of 132 amino acids with a predicted molecular mass of 14.7 kDa and is denoted rFh15. It also has a significant homology to a 14-kDa S. mansoni fatty acid binding protein (Sm14). In the present study, nFh12 was delipidated with charcoal treatment and then studied by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Additionally, a lipid analysis of nFh12 was undertaken using gas chromatography-mass spectrometry to demonstrate that the nFh12 protein complex is, in fact, a complex of fatty acid binding proteins. Five long-chain saturated and unsaturated fatty acids were detected. The most abundant were palmitic acid (38%), stearic acid (24%), and oleic acid (13%). These fatty acid molecules do not have covalent bonds attached to the protein molecule. Because both nFh12 and Sm14 protect mice against challenge infection with F. hepatica and S. mansoni, it is possible that they have common protective epitopes in which fatty acids could be involved. Further studies are in progress to determine the chemical nature of these potential common epitopes.  相似文献   

13.
Constitutive NADH oxidase proteins of the mammalian cell surface exhibit two different activities, oxidation of hydroquinones (or NADH) and protein disulfide-thiol interchange which alternate to yield oscillatory patterns with period lengths of 24 min. A drug-responsive tNOX (tumor-associated NADH oxidase) has a period length of about 22 min. The tNOX cDNA has been cloned and expressed. These two proteins are representative of cycling oxidase proteins of the plant and animal cell surface. In this report, we describe a series of eight amino acid replacements in tNOX which, when expressed in Escherichia coli, were analyzed for enzymatic activity, drug response and period length. Replacement sites selected include six cysteines that lie within the processed plasma membrane (34 kDa) form of the protein, and amino acids located in putative drug and adenine nucleotide (NADH) binding domains. The latter, plus two of the cysteine replacements, resulted in a loss of enzymatic activity. The recombinant tNOX with the modified drug binding site retained activity but the activity was no longer drug-responsive. The four remaining cysteine replacements were of interest in that both activity and drug response were retained but the period length for both NADH oxidation and protein disulfide-thiol interchange was increased from 22 min to 36 or 42 min. The findings confirm the correctness of the drug and adenine nucleotide binding motifs within the tNOX protein and imply a potential critical role of cysteine residues in determining the period length.  相似文献   

14.
A plasmid carrying the malE gene, coding for the periplasmic maltose-binding protein of E. coli, was submitted to random mutagenesis by the insertion of a BamHI linker. About 25% of the clones recovered had acquired a BamHI site in the gene malE. Most of the linker insertions were accompanied by small deletions with an average size of 30 base pairs. Among 21 mutants synthesizing a stable maltose binding protein, 8 were still able to grow on maltose. A preliminary analysis of these mutants indicates that certain regions of the protein may not be essential for maltose transport.  相似文献   

15.
The fatty acid transport protein (FATP) Fat1p in the yeast Saccharomyces cerevisiae functions in concert with acyl-coenzyme A synthetase (ACSL; either Faa1p or Faa4p) in vectorial acylation, which couples the transport of exogenous fatty acids with activation to CoA thioesters. To further define the role of Fat1p in the transport of exogenous fatty acids, the topological orientation of two highly conserved motifs [ATP/AMP and FATP/very long chain acyl CoA synthetase (VLACS)], the carboxyl 124 amino acid residues, which bind the ACSL Faa1p, and the amino and carboxyl termini within the plasma membrane were defined. T7 or hemagglutinin epitope tags were engineered at both amino and carboxyl termini, as well as at multiple nonconserved, predicted random coil segments within the protein. Six different epitope-tagged chimeras of Fat1p were generated and expressed in yeast; the sidedness of the tags was tested using indirect immunofluorescence and protease protection by Western blotting. Plasma membrane localization of the tagged proteins was assessed by immunofluorescence. Fat1p appears to have at least two transmembrane domains resulting in a N(in)-C(in) topology. We propose that Fat1p has a third region, which binds to the membrane and separates the highly conserved residues comprising the two halves of the ATP/AMP motif. The N(in)-C(in) topology results in the placement of the ATP/AMP and FATP/VLACS domains of Fat1p on the inner face of the plasma membrane. The carboxyl-terminal region of Fat1p, which interacts with ACSL, is likewise positioned on the inner face of the plasma membrane. This topological orientation is consistent with the mechanistic roles of both Fat1p and Faa1p or Faa4p in the coupled transport/activation of exogenous fatty acids by vectorial acylation.  相似文献   

16.
Polyunsaturated fatty acids (PUFAs) are made in some strains of deep‐sea bacteria by multidomain proteins that catalyze condensation, ketoreduction, dehydration, and enoyl‐reduction. In this work, we have used the Udwary‐Merski Algorithm sequence analysis tool to define the boundaries that enclose the dehydratase (DH) domains in a PUFA multienzyme. Sequence analysis revealed the presence of four areas of high structure in a region that was previously thought to contain only two DH domains as defined by FabA‐homology. The expression of the protein fragment containing all four protein domains resulted in an active enzyme, while shorter protein fragments were not soluble. The tetradomain fragment was capable of catalyzing the conversion of crotonyl‐CoA to β‐hydroxybutyryl‐CoA efficiently, as shown by UV absorbance change as well as by chromatographic retention of reaction products. Sequence alignments showed that the two novel domains contain as much sequence conservation as the FabA‐homology domains, suggesting that they too may play a functional role in the overall reaction. Structure predictions revealed that all domains belong to the hotdog protein family: two of them contain the active site His70 residue present in FabA‐like DHs, while the remaining two do not. Replacing the active site His residues in both FabA domains for Ala abolished the activity of the tetradomain fragment, indicating that the DH activity is contained within the FabA‐homology regions. Taken together, these results provide a first glimpse into a rare arrangement of DH domains which constitute a defining feature of the PUFA synthases.  相似文献   

17.
Oligomerization of the murine fatty acid transport protein 1   总被引:3,自引:0,他引:3  
The 63-kDa murine fatty acid transport protein 1 (FATP1) was cloned on the basis of its ability to augment fatty acid import when overexpressed in mammalian cells. The membrane topology of this integral plasma membrane protein does not resemble that of polytopic membrane transporters for other substrates. Western blot analysis of 3T3-L1 adipocytes that natively express FATP1 demonstrate a prominent 130-kDa species as well as the expected 63-kDa FATP1, suggesting that this protein may participate in a cell surface transport protein complex. To test whether FATP1 is capable of oligomerization, we expressed functional FATP1 molecules with different amino- or carboxyl-terminal epitope tags in fibroblasts. These epitope-tagged proteins also form apparent higher molecular weight species. We show that, when expressed in the same cells, differentially tagged FATP1 proteins co-immunoprecipitate. The region between amino acid residues 191 and 475 is sufficient for association of differentially tagged truncated FATP1 constructs. When wild type FATP1 and the non-functional s250a FATP1 mutant are co-expressed in COS7 cells, mutant FATP1 has dominant inhibitory function in fatty acid uptake assays. Taken together, these results are consistent with a model in which FATP1 homodimeric complexes play an important role in cellular fatty acid import.  相似文献   

18.
Fatty acid uptake into 3T3 L1 adipocytes is predominantly transporter mediated. Here we show that, during 3T3 L1 adipocyte differentiation, expression of fatty acid transport proteins (FATPs) 1 and 4 is induced. Using subcellular membrane fractionation and immunofluorescence microscopy, we demonstrate that, in adipocytes, insulin induces plasma membrane translocation of FATPs from an intracellular perinuclear compartment to the plasma membrane. This translocation was observed within minutes of insulin treatment and was paralleled by an increase in long chain fatty acid (LCFA) uptake. In contrast, treatment with TNF-alpha inhibited basal and insulin-induced LCFA uptake and reduced FATP1 and -4 levels. Thus, hormonal regulation of FATP activity may play an important role in energy homeostasis and metabolic disorders such as type 2 diabetes.  相似文献   

19.
Polygalacturonase inhibitor proteins (PGIPs) protect plants against invasion by diverse microbial and invertebrate enemies that use polygalacturonase (PG) to breach the plant cell wall. Directed mutagenesis has identified specific natural mutations conferring novel defensive capability in green bean PGIP against a specific fungal PG. These same sites are identified as positively selected by phylogenetic codon-substitution models, demonstrating the utility of such models for connecting retrospective comparative analyses with contemporary, ecologically relevant variation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号