共查询到20条相似文献,搜索用时 15 毫秒
1.
Susceptibilities of bollworm, Helicoverpa zea (Boddie) and tobacco budworm, Heliothis virescens (F.) to Cry1Ac were measured via a diet-incorporated assay with MPV II at the University of Arkansas during 2002-2004. Lethal concentration-mortality (LC50) estimates of five laboratory, seven laboratory-cross, and 10 field populations of H. virescens varied 12-fold. Pooled susceptibilities of H. virescens across all laboratory and field populations varied five-fold. The LC50 estimates for H. virescens were higher than those reported by previous research before the introduction of transgenic crops. However, the ratio of susceptibility of laboratory and field populations was similar, suggesting no change in overall species susceptibility. Individual LC50 estimates of five laboratory, nine laboratory-cross, and 57 field populations of H. zea varied over 130-fold. Pooled susceptibilities across laboratory and field populations varied widely. Among the field populations, colonies from non-Bacillus thuringiensis (Bt) crops were generally more susceptible than those from Bt crops. Across the Bt crops expressing Cry protein, colonies from Bollgard (Monsanto Company) cotton had lower susceptibility to CrylAc than those from Bt corn and those from non-Bt crops. 相似文献
2.
Susceptibility of bollworm and tobacco budworm (Lepidoptera: Noctuidae) to Cry2Ab2 insecticidal protein 总被引:1,自引:0,他引:1
Susceptibilities of 82 bollworm, Helicoverpa zea (Boddie), and 44 tobacco budworm, Heliothis virescens (F.) (Lepidoptera: Noctuidae), populations to Cry2Ab2 protein were measured in diet incorporated assays at the University of Arkansas from 2002 to 2005. Resulting data were used to calculate overall (pooled data) estimates of species susceptibility for future benchmarks of resistance. Variabilities among populations also were studied by comparing regressions for individual populations and calculating mean susceptibilities for different subgroups of the colonies studied. Individual lethal concentration (LC50) estimates for nine laboratory, seven laboratory-cross, and 28 field populations of H. virescens varied up to 48-fold when adjusted for the response of the most susceptible laboratory colony studied. Mean susceptibilities of all laboratory, laboratory-cross, or field colonies varied only two-fold. When grouped by host plants, populations collected on tobacco, Nicotiana tabacum (L.), seemed to be less susceptible than those collected on other host plants. Individual LC50 values for 82 laboratory, laboratory-cross and field populations of H. zea varied up to 37-fold. Mean LC50 values of all laboratory, laboratory-cross, or field populations varied only three-fold. Susceptibilities of populations from Bollgard cotton were up to four-fold less than those from Bacillus thuringiensis corn, Zea mays L. Field populations collected during late season were generally less susceptible than those collected early in the season. Across the two species, H. zea was less sensitive to Cry2Ab2 than H. virescens. Both species seem to be less sensitive to Cry2Ab2 than to CrylAc. 相似文献
3.
We studied mechanisms of resistance to Bacillus thuringiensis insecticidal crystal protein Cry1C in the diamondback moth, Plutella xylostella (L.). Binding assays with midgut brush border membrane vesicles prepared from whole larvae showed no significant difference between resistant and susceptible strains in binding of radioactively-labeled Cry1C. These results indicate that reduced binding of Cry1C to midgut membrane target sites did not cause resistance to Cry1C. Thus, the mechanism of resistance to Cry1C differs from that observed in several previously reported cases of resistance to Cry1A toxins in diamondback moth. We tested Cry1C toxin and Cry1C crystalline protoxin against resistant and susceptible larvae using leaf disk bioassays. After adjusting for the size difference between Cry1C toxin and protoxin, we found that with resistant larvae, toxin was significantly more toxic than protoxin. In contrast, with susceptible larvae, no significant difference in toxicity occurred between Cry1C toxin and protoxin. The resistance ratios for Cry1C were 19 for toxin and 48 for protoxin. These results suggest that reduced conversion of Cry1C protoxin to toxin is a minor mechanism of resistance to Cry1C. Because neither reduced binding nor reduced conversion of protoxin to toxin appear to be major mechanisms, one or more other mechanisms are important in diamondback moth resistance to Cry1C. 相似文献
4.
Muralimohan N. Saini Ravi Prakash Kesiraju Karthik Pattanayak Debasis Ananda Kumar P. Kasturi K. Sreevathsa Rohini 《Journal of plant biochemistry and biotechnology.》2020,29(3):518-527
Journal of Plant Biochemistry and Biotechnology - Concurrent expression of multiple insecticidal toxins as pyramided genes in the same host plant is one of the tangible strategies to delay the... 相似文献
5.
Hernández-Rodríguez CS Hernández-Martínez P Van Rie J Escriche B Ferré J 《Applied and environmental microbiology》2012,78(11):4048-4050
Cry1Fa insecticidal protein was successfully radiolabeled with (125)I-Na. Specific binding to brush border membrane vesicles was shown for the lepidopteran species Ostrinia nubilalis, Spodoptera frugiperda, Spodoptera exigua, Helicoverpa armigera, Heliothis virescens, and Plutella xylostella. Homologous competition assays were performed to obtain equilibrium binding parameters (K(d) [dissociation constant] and R(t) [concentration of binding sites]) for these six insect species. 相似文献
6.
Rice (Oryza sativa L. 'Nipponbare') cDNA subtractive suppression hybridization (SSH) libraries constructed using cadmium (Cd)-treated seedling roots were screened to isolate Cd-responsive genes. A cDNA clone, encoding the rice homolog of Metal Tolerance Protein (OsMTP1), was induced by Cd treatment. Plant MTPs belong to cation diffusion facilitator (CDF) protein family, which are widespread in bacteria, fungi, plants, and animals. OsMTP1 heterologous expression in yeast mutants showed that OsMTP1 was able to complement the mutant strains' hypersensitivity to Ni, Cd, and Zn, but not other metals including Co and Mn. OsMTP1 expression increased tolerance to Zn, Cd, and Ni in wild-type yeast BY4741 during the exponential growth phase. OsMTP1 fused to green fluorescent protein was localized in onion epidermal cell plasma membranes, consistent with an OsMTP1 function in heavy metal transporting. OsMTP1 dsRNAi mediated by transgenic assay in rice seedlings resulted in heavy metal sensitivity and changed the heavy metal accumulation in different organs of mature rice under low-concentration heavy metal stress. Taken together, our results show that OsMTP1 is a bivalent cation transporter localized in the cell membrane, which is necessary for efficient translocation of Zn, Cd and other heavy metals, and maintain ion homeostasis in plant. 相似文献
7.
Michael Meissle Simon Knecht Mario Waldburger J?rg Romeis 《Arthropod-Plant Interactions》2012,6(2):203-211
The sensitivity of the cereal leaf beetle, Oulema melanopus (Coleoptera: Chrysomelidae), to maize-expressed Bacillus thuringiensis (Bt) proteins was investigated in the present study. Neonate larvae of O. melanopus were caged on leaves of Cry3Bb1-expressing (MON88017) or Cry1Ab-expressing (MON810) Bt maize, the corresponding near-isolines, or two non-related, conventional maize varieties. Larval survival was reduced on Cry3Bb1-expressing, but not on Cry1Ab-expressing maize compared with conventional varieties. Differences among conventional varieties were also present. The amount of eaten leaf material, developmental time to prepupal stage, and prepupal weight did not differ between Bt maize varieties and their corresponding near-isolines. In an additional feeding study with newly emerged adults, survival and beetle weight did not differ when leaves of Cry3Bb1-expressing maize or the near-isoline were offered as food over 3 weeks. ELISA measurements revealed that larvae feeding on Bt maize contained rather high Cry3Bb1 or Cry1Ab levels, which were in the same order of magnitude as the leaves. In contrast, concentrations in feces were one order, and concentrations in prepupae and adults two orders of magnitude lower. 相似文献
8.
Molecular characterization of a novel vegetative insecticidal protein from Bacillus thuringiensis effective against sap-sucking insect pest 总被引:1,自引:0,他引:1
Several isolates of Bacillus thuringiensis (Bt) were screened for the vegetative insecticidal protein (Vip) effective against sap-sucking insect pests. Screening results were based on LC(50) values against cotton aphid (Aphis gossypii), one of the dangerous pests of various crop plants including cotton. Among the isolates, the Bt#BREF24 showed promising results, and upon purification the aphidicidal protein was recognized as a binary toxin. One of the components of this binary toxin was identified by peptide sequencing to be a homolog of Vip2A that has been reported previously in other Bacillus spp. Vip2 belongs to the binary toxin group Vip1-Vip2, and is responsible for the enzymatic activity; and Vip1 is the translocation and receptor binding protein. The two genes encoding the corresponding proteins of the binary toxin, designated as vip2Ae and vip1Ae, were cloned from the Bt#BREF24, sequenced, and heterologously expressed in Escherichia coli. Aphid feeding assay with the recombinant proteins confirmed that these proteins are indeed the two components of the binary toxins, and the presence of both partners is essential for the activity. Aphid specificity of the binary toxin was further verified by ligand blotting experiment, which identified an ~50 kDa receptor in the brush border membrane vesicles of the cotton aphids only, but not in the lepidopteran insects. Our finding holds a promise of its use in future as a candidate gene for developing transgenic crop plants tolerant against sap-sucking insect pests. 相似文献
9.
Gahan LJ Ma YT Coble ML Gould F Moar WJ Heckel DG 《Journal of economic entomology》2005,98(4):1357-1368
The development of pest resistance to transgenic crop plants producing insecticidal toxins from Bacillus thuringiensis Berliner (Bt) poses a major threat to their sustainable use in agriculture. Pyramiding two toxins with different modes of actions in the same plant is now being used to delay the evolution of resistance in the insects, but this strategy could fail if a single gene in a pest confers resistance to both toxins. The CP73 strain of the cotton pest Heliothis virescens (F.) is resistant to both Cry1Ac and Cry2Aa toxins from Bt. We explored the genetic basis of resistance in this strain with a backcross, split-family design. The gene with the largest effect on Cry1Ac resistance in CP73 (BtR-5) maps to linkage group 10 of H. virescens and thus differs from the previously described linkage group 9 BtR-4 resistance found in the YHD2 strain, involving mutation of the gene encoding a 12-domain cadherin-like binding target of the Cry1A toxins. Neither BtR-4 nor BtR-5 seems to confer significant resistance to Cry2Aa. A majority of the linkage groups studied in one backcross family made a small positive contribution to resistance for both toxins. Thus, the Cry2Aa resistance in CP73 is not caused by either of the two major Cry1Ac resistance-conferring genes but instead probably has a quantitative genetic basis. 相似文献
10.
Interaction of gene-cloned and insect cell-expressed aminopeptidase N of Spodoptera litura with insecticidal crystal protein Cry1C 总被引:3,自引:0,他引:3
Insecticidal toxins produced by Bacillus thuringiensis interact with specific receptors located in the midguts of susceptible larvae, and the interaction is followed by a series of biochemical events that lead to the death of the insect. In order to elucidate the mechanism of action of B. thuringiensis toxins, receptor protein-encoding genes from many insect species have been cloned and characterized. In this paper we report the cloning, expression, and characterization of Cry toxin-interacting aminopeptidase N (APN) isolated from the midgut of a polyphagous pest, Spodoptera litura. The S. litura APN cDNA was expressed in the Sf21 insect cell line by using a baculovirus expression system. Immunofluorescence staining of the cells revealed that the expressed APN was located at the surface of Sf21 cells. Treatment of Sf21 cells expressing S. litura APN with phosphatidylinositol-specific phospholipase C demonstrated that the APN was anchored in the membrane by a glycosylphosphatidylinositol moiety. Interaction of the expressed receptor with different Cry toxins was examined by immunofluorescence toxin binding studies and ligand blot and immunoprecipitation analyses. By these experiments we showed that the bioactive toxin, Cry1C, binds to the recombinant APN, while the nonbioactive toxin, Cry1Ac, showed no interaction. 相似文献
11.
12.
13.
We have expressed hCTR1, the human copper transporter, in Sf9 cells using a baculovirus-mediated expression system, and we observed greatly enhanced copper uptake. Western blots showed that the protein is delivered to the plasma membrane, where it mediates saturable copper uptake with a K(m) of approximately 3.5 microm. We also expressed functional transporters where the N-linked glycosylation sites were substituted, and we provided evidence for the extracellular location of the amino terminus. Accessibility of amino-terminal FLAG epitope to antibody prior to permeabilization and of carboxyl-terminal FLAG only after permeabilization confirmed the extracellular location of the amino terminus and established the intracellular location of the carboxyl terminus. Tryptic digestion of hCTR1 occurred within the cytoplasmic loop and generated a 10-Da carboxyl-terminal peptide; cleavage was prevented by the presence of copper. hCTR1 mutants where Cys-161 and Cys-189, the two native cysteines, were replaced with serines also mediated copper uptake, indicating that neither cysteine residue was essential for transport. However, the mutants provided evidence that these residues may stabilize hCTR1 oligomerization. Western blots of hCTR1 in Sf9 cells showed expression levels 100-fold higher than in mammalian (HepG2) cells. The high level of functional expression and the low level of endogenous copper uptake will enable future structure-function analysis of this important protein. 相似文献
14.
A new Bacillus thuringiensis strain belonging to the serovar aizawai was isolated from a dead larva of the lepidopteran Mythimna loreyi collected in a corn crop in Spain during a natural epizootic. This strain, which was named Leapi01, was compared with the kurstaki and aizawai strains isolated from Dipel(R) and Xentari(R), by electron microscopy, SDS-PAGE, plasmid pattern, PCR and insecticidal activity. This strain showed similar morphological and biochemical characteristics to the standard strains. The content in cry genes of Leapi01 was analysed with a set of general and specific primers recognizing most of the cry genes reported to date. DNA amplification was obtained with primers corresponding to six genes and, to clearly determine the identity of the genes, the amplified fragments were sequenced and corresponded to cry1Aa, cry1Ab, cry1Ca, cry1Da, cry2Ab and cry1Ia. However, the proteins encoded by two of these genes, Cry2 and Cry1I, were not detected in the SDS-PAGE of the purified parasporal bodies. The insecticidal activity of Leapi01 was determined by bioassays against two Lepidoptera species, Helicoverpa armigera and Spodoptera littoralis, that were found to be very susceptible to Leapi01 purified crystals. Since two of the cry genes identified in Leapi01 appear to be silent, other factors may be involved in the toxicity of the strain. As a result of this study, the potential of Leapi01 as biological control agent is discussed, with special emphasis on the high toxicity and relatively broad spectrum activity compared with two B. thuringiensis strains that are the active ingredients of commercial preparations commonly used as bioinsecticides. 相似文献
15.
García-Gimeno MA Muñoz I Ariño J Sanz P 《The Journal of biological chemistry》2003,278(48):47744-47752
The Saccharomyces cerevisiae open reading frame YFR003c encodes a small (155-amino acid) hydrophilic protein that we identified as a novel, heat-stable inhibitor of type 1 protein phosphatase (Ypi1). Ypi1 interacts physically in vitro with both Glc7 and Ppz1 phosphatase catalytic subunits, as shown by pull-down assays. Ypi1 inhibits Glc7 but appears to be less effective toward Ppz1 phosphatase activity under the conditions tested. Ypi1 contains a 48RHNVRW53 sequence, which resembles the characteristic consensus PP1 phosphatase binding motif. A W53A mutation within this motif abolishes both binding to and inhibition of Glc7 and Ppz1 phosphatases. Deletion of YPI1 is lethal, suggesting a relevant role of the inhibitor in yeast physiology. Cells overexpressing Ypi1 display a number of phenotypes consistent with an inhibitory role of this protein on Glc7, such as decreased glycogen content and an increased growth defect in a slt2/mpk1 mitogen-activated protein kinase-deficient background. Taking together, these results define Ypi1 as the first inhibitory subunit of Glc7 identified in budding yeast. 相似文献
16.
Girard F Vachon V Préfontaine G Marceau L Su Y Larouche G Vincent C Schwartz JL Masson L Laprade R 《Applied and environmental microbiology》2008,74(9):2565-2572
Helix alpha4 of Bacillus thuringiensis Cry toxins is thought to line the lumen of the pores they form in the midgut epithelial cells of susceptible insect larvae. To define its functional role in pore formation, most of the alpha4 amino acid residues were replaced individually by a cysteine in the Cry1Aa toxin. The toxicities and pore-forming abilities of the mutated toxins were examined, respectively, by bioassays using neonate Manduca sexta larvae and by a light-scattering assay using midgut brush border membrane vesicles isolated from M. sexta. A majority of these mutants had considerably reduced toxicities and pore-forming abilities. Most mutations causing substantial or complete loss of activity map on the hydrophilic face of the helix, while most of those having little or only relatively minor effects map on its hydrophobic face. The properties of the pores formed by mutants that retain significant activity appear similar to those of the pores formed by the wild-type toxin, suggesting that mutations resulting in a loss of activity interfere mainly with pore formation. 相似文献
17.
为明确Cry2Ab和Cry1Ac 2种Bt杀虫蛋白单用与混用对棉铃虫Helicoverpa armigera(Hübner)中肠主要蛋白酶活性的影响,本文测定了取食含不同Bt蛋白人工饲料后棉铃虫中肠总蛋白酶、类胰蛋白酶和类胰凝乳蛋白酶活性的差异.结果发现:Cry2Ab处理12h后对棉铃虫中肠总蛋白酶影响不大;对类胰蛋白酶的影响最大,除最高浓度处理外,其他浓度处理后棉铃虫类胰蛋白酶的活性明显高于对照;但对类胰凝乳蛋白酶活性的影响呈倒“V”字型,只有6.67μg/g Cry2Ab处理后的棉铃虫酶活力显著高于对照,其他浓度处理与对照差异不显著或略低于对照;随着取食含Cry2Ab饲料时间的增加,棉铃虫中肠类胰蛋白酶和类胰凝乳蛋白酶的活性比对照显著增加;与对照相比,处理36h后类胰蛋白酶活性最高可增加到6.43倍.Cry1Ac处理棉铃虫12h后总蛋白酶、类胰蛋白酶和类胰凝乳蛋白酶活性都明显增加,而且与处理浓度呈正相关;但是24h后,处理后棉铃虫的总蛋白酶和类胰凝乳蛋白酶活性明显降低,只有类胰蛋白酶活性仍高于对照,但活性增长倍数低于12h时的处理.Cry2Ab和Cry1Ac 2种蛋白混用处理棉铃虫后,2种酶的酶活力基本低于Cry1Ac和Cry2Ab单用的酶活力之和;只有2种蛋白浓度均为2.22μg/g混用时,处理12b后类胰蛋白酶和类胰凝乳蛋白酶的活性高于2种蛋白单用时酶活力之和,且都显著的高于对照. 相似文献
18.
Sato Ryoichi Takeuchi Katsuyoshi Ogiwara Katsutoshi Minami Masayosi Kaji Yasuko Suzuki Nobukazu Hori Hidetaka Asano Shoji Ohba Michio Iwahana Hidenori 《Current microbiology》1994,28(1):15-19
RecombinantEscherichia coli strains harboring pAG1, pAG2, pKBB100, and pKBB101 were cloned by using antiserum constructed against 130-kDa crystal protein antigen ofBacillus thuringiensis serovarjaponensis strain Buibui. DNAs in the recombinant strains hybridized to the 26-base oligonucleotide probe corresponding to N-terminal amino acids of the 130-kDa crystal protein of strain Buibui. Cultures of the recombinant strains were toxic to larvae of the cupreous chafer,anomala cuprea. Furthermore, the production of the 130-kDa polypeptide was demonstrated in the cells harboring pAG1 and pAG2 by immunoblot analysis with antiserum against the 130-kDa crystal protein. Southern hybridization analysis showed that the 130-kDa crystal protein gene is located on the chromosomal DNA of strain Buibui. On the other hand, DNA probes derived fromcryIA(a) andcryIIIA genes did not hybridize to the DNA of strain Buibui. 相似文献
19.
Roh JY Li MS Chang JH Choi JY Shim HJ Shin SC Boo KS Je YH 《Letters in applied microbiology》2004,38(5):393-399
AIMS: To investigate fusion expression between Bacillus thuringiensis crystal protein and a foreign protein, the expression of a fusion protein comprised of Cry1Ac, and enhanced green fluorescent protein (EGFP) in B. thuringiensis Cry(-)B strain was examined. METHODS AND RESULTS: The N-terminal fusion expression of EGFP in Cry1Ac was attempted under the control of the native cry1Ac promoter. The EGFP gene was cloned into pProMu and named pProMu-EGFP. The transformant, ProMu-EGFP/CB produced parasporal inclusions that were of bipyramidal-shaped crystals in size ranging from 200 to 300 nm. The fusion protein was approximately 150 kDa and identified by the immunoblot analysis using a Cry1Ac antibody and also a GFP antibody. The LC(50) of the ProMu-EGFP/CB was twofold higher when compared with that by the ProAc/CB. However, the crystal protein produced by the ProMu-EGFP/CB was effective on Plutella xylostella larvae. CONCLUSIONS: The ProMu-EGFP/CB produced bipyramidal shaped and insecticidal crystals comprising fusion proteins. SIGNIFICANCE AND IMPACT OF THE STUDY: Through the N-terminal fusion expression of EGFP and Cry1Ac, expression and crystallization between the B. thuringiensis crystal protein and a foreign protein were validated. 相似文献