首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The highly pathogenic H5N1 influenza virus, which is rapidly mutating and becoming increasingly drug-resistant, was investigated by means of structure-activity relationship between NA (neuraminidase) and three inhibitors, i.e., DANA (2,3-didehydro-2-deoxy-N-acetylneuraminic acid), zanamivir, and oseltamivir. A homology model of the H5N1-NA from the highly pathogenic chicken H5N1 A viruses isolated during the 2003-2004 influenza outbreaks in Japan was built based on the crystal structure of N9-NA complexed with DANA (PDB code: 1F8B). It was found that the traditional constituent residues around the active site of NA family are highly conserved in the H5N1-NA. However, a partially lipophilic pocket composed by Ala248 and Thr249 in N9-NA becomes a hydrophilic pocket because the two residues in the H5N1-NA are replaced by hydrophilic residues Ser227 and Asn228, respectively. On the other hand, two hydrophilic residues Asn347 and Asn348 in the N9-NA are replaced by two lipophilic residues Ala323 and Tyr324 in the H5N1-NA, respectively, leading to the formation of a new lipophilic pocket. This kind of subtle variation not only destroys the original lipophilic environment but also changes the complement interaction between the H5N1-NA and DANA. Such a finding might provide insights into the secret why some of H5N1 strains bear high resistance for existing NA inhibitors, and stimulate new strategies for designing new drugs against these viruses.  相似文献   

2.
Avian influenza A virus constitutes a large threat to human health. Recent outbreaks of highly pathogenic avian influenza H5N1 virus in poultry and in humans have raised concerns that an influenza pandemic will occur in the near future. Transmission from avian species to humans remains sporadic, but the mortality associated with human infection is very high (about 62%). To date, there are no effective therapeutic drugs or a prophylactic vaccines available, which means that there is still a long way to go before we can eradicate or cure avian influenza. This review focuses on the molecular pathogenesis of avian influenza H5N1 virus infection. An understanding of the viral pathogenesis may facilitate the development of novel treatments or effective eradication of this fatal disease.  相似文献   

3.
The worldwide spread of H5N1 avian influenza and the increasing reports about its resistance to the existing drugs have made a priority for the development of the new anti-influenza molecules. The crystal structure of H5N1 avian influenza neuraminidase reported recently by Russell et al. [R.J. Russell, L.F. Haire, D.J. Stevens, P.J. Collins, Y. P. Lin, G.M. Blackburn, A.J. Hay, S.J. Gamblin, J.J. Skehel, The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design, Nature 443 (2006) 45-49] have provided new opportunities for drug design in this regard. It is revealed through the structure that the active sites of the group-1 neuraminidases, which contain the N1 subtype, have a very different three-dimensional structure from those of group-2 neuraminidases. The key difference is in the 150-loop cavity adjacent to the conserved active site in neuraminidase. Based on these findings and by modifying oseltamivir, six analog inhibitors were proposed as candidates for developing inhibitors against H5N1 virus, particularly against the oseltamivir-resistant H5N1 virus strain.  相似文献   

4.
为明确广东地区分离的一株禽流感病毒H5N1的遗传背景,建立流感病毒反向遗传的平台。对该株禽流感病毒进行了空斑纯化与组织细胞培养,检测其在MDCK细胞中的增殖特性;利用H5N1病毒通用引物,通过RT-PCR对该病毒全基因组的8条片段进行全长克隆及测序分析;将H5N1的8条全长基因组片段分别插入反向遗传通用载体中,构建禽流感病毒H5N1的感染性克隆。结果表明,该H5N1毒株在MDCK细胞中可不依赖胰酶进行有效增殖与复制,可使MDCK细胞出现典型细胞病变,具有高致病性禽流感病毒的细胞增殖特征。RT-PCR克隆得到该H5N1毒株的PB2、PB1、PA、HA、NP、NA、M和NS八条全长片段,经测序分析确认该毒株的基因序列,其内部编码序列出现多处突变,其中HA连接肽为多个连续碱性氨基酸,表明该毒株可不依赖胰酶进行有效复制,与细胞培养结果一致,未出现抗药性的遗传突变。PCR与测序证明,插入H5N1八个全长基因组片段的载体序列完全正确,表明成功构建了该毒株的感染性克隆。为明确病毒遗传信息,建立流感病毒反向遗传的平台,为进一步研究禽流感病毒相关疫苗提供了研究基础。  相似文献   

5.
A new strain of influenza A (H1N1) virus is a major cause of morbidity and mortality around the world. The neuraminidase of the influenza virus has been the most potential target for the anti-influenza drugs such as oseltamivir and zanamivir. However, the emergence of drug-resistant variants of these drugs makes a pressing need for the development of new neuraminidase inhibitors for controlling illness and transmission. Here a 3D structure model of H1N1 avian influenza virus neuraminidase type 1 (N1) was constructed based on the structure of the template H5N1 avian influenza virus N1. Upon application of virtual screening technique for N1 inhibitors, two novel compounds (ZINC database ID: ZINC02128091, ZINC02098378) were found as the most favorable interaction energy with N1. Docking results showed that the compounds bound not only in the active pocket, but also in a new hydrophobic cave which contains Arg368, Trp399, Ile427, Pro431 and Lys432 of N1. Our result suggested that both of the screened compounds containing the hydrophobic group bring a strong conjugation effect with Arg293, Arg368 Lys432 of N1 by pi-pi interaction. However, the control inhibitors zanamivir and oseltamivir do not have this effect. The details of N1-compound binding structure obtained will be valuable for the development of a new anti-influenza virus agent.  相似文献   

6.
Antiviral resistance has turned into a world concern nowadays. Influenza A H1N1 emerged as a problem at the world level due to the neuraminidase (NA) mutations. The NA mutants conferred resistance to oseltamivir and zanamivir. Several efforts were conducted to develop better anti-influenza A H1N1 drugs. Our research group combined in silico methods to create a compound derived from oseltamivir to be tested in vitro against influenza A H1N1. Here we show the results of a new compound derived from oseltamivir but with specific chemical modifications, with significant affinity either on NA (in silico and in vitro assays) or HA (in silico) from influenza A H1N1 strain. We include docking and molecular dynamics (MD) simulations of the oseltamivir derivative at the binding site onto NA and HA of influenza A H1N1. Additionally, the biological experimental results show that oseltamivir derivative decreases the lytic-plaque formation on viral susceptibility assays, and it does not show cytotoxicity. Finally, oseltamivir derivative assayed on viral NA showed a concentration-dependent inhibition behavior at nM, depicting a high affinity of the compound for the enzyme, corroborated with the MD simulations results, placing our designed oseltamivir derivative as a potential antiviral against influenza A H1N1.  相似文献   

7.
The viral surface glycoprotein neuraminidase (NA) allows the influenza virus penetration and the egress of virions. NAs are classified as A, B, and C. Type-A NAs from influenza virus are subdivided into two phylogenetically distinct families, group-1 and group-2. NA inhibition by oseltamivir represents a therapeutic approach against the avian influenza virus H5N1. Here, structural bases for oseltamivir recognition by group-1 NA1, NA8 and group-2 NA9 are highlighted by the ScrewFit algorithm for quantitative structure comparison. Oseltamivir binding to NA1 and NA8 affects the geometry of Glu119 and of regions Arg130-Ser160, Val240-Gly260, and Asp330-Glu382, leading to multiple NA conformations. Additionally, although NA1 and NA9 share almost the same oseltamivir-bound final conformation, they show some relevant differences as suggested by the ScrewFit algorithm. These results indicate that the design of new NA inhibitors should take into account these family-specific effects induced on the whole structure of NAs.  相似文献   

8.
The pandemic influenza AH1N1 (2009) caused an outbreak of human infection that spread to the world. Neuraminidase (NA) is an antigenic surface glycoprotein, which is essential to the influenza infection process, and is the target of anti-flu drugs oseltamivir and zanamivir. Currently, NA inhibitors are the pillar pharmacological strategy against seasonal and global influenza. Although mutations observed after NA-inhibitor treatment are characterized by changes in conserved amino acids of the enzyme catalytic site, it is possible that specific amino acid substitutions (AASs) distant from the active site such as H274Y, could confer oseltamivir or zanamivir resistance. To better understand the molecular distribution pattern of NA AASs, we analyzed NA AASs from all available reported pandemic AH1N1 NA sequences, including those reported from America, Africa, Asia, Europe, Oceania, and specifically from Mexico. The molecular distributions of the AASs were obtained at the secondary structure domain level for both the active and catalytic sites, and compared between geographic regions. Our results showed that NA AASs from America, Asia, Europe, Oceania and Mexico followed similar molecular distribution patterns. The compiled data of this study showed that highly conserved amino acids from the NA active site and catalytic site are indeed being affected by mutations. The reported NA AASs follow a similar molecular distribution pattern worldwide. Although most AASs are distributed distantly from the active site, this study shows the emergence of mutations affecting the previously conserved active and catalytic site. A significant number of unique AASs were reported simultaneously on different continents.  相似文献   

9.
The use of antiviral drugs such as influenza neuraminidase (NA) inhibitors is a critical strategy to prevent and control flu pandemic, but this strategy faces the challenge of emerging drug-resistant strains. F or a highly pathogenic avian influenza (HPAI) H5N1 virus, biosafety restrictions have significantly limited the efforts to monitor its drug responses and mechanisms involved. In this study, a rapid and biosafe assay based on NA pseudovirus was developed to study the resistance of HPAI H5N1 virus to NA inhibitor drugs. The H5N1 NA pseudovirus was comprehensively tested using oseltamivir-sensitive strains and their resistant mutants. Results were consistent with those in previous studies, in which live H5N1 viruses were used. Several oseltamivir-resistant mutations reported in human H1N1 were also identifi ed to cause decreased oseltamivir sensitivity in H5N1 NA by using the H5N1 NA pseudovirus. Thus, H5N1 NA pseudoviruses could be used to monitor HPAI H5N1 drug resistance rapidly and safely.  相似文献   

10.
对深圳首例疑似人禽流感病人的标本,进行了RT-PCR、Real-time PCR检测及病毒分离培养、血清中和试验、抗原比检测及发病早期不同病程多份标本的病毒载量分析;对分离物进行了HA基因、NA基因及M基因的核酸检测.结果表明:患者气管吸出物的H5N1亚型和A型流感病毒的特异核酸均呈阳性,并通过细胞培养分离到禽流感病毒A/Guangdong/2/06(H5N1)株.气管吸取物病毒载量随着病程延长逐渐减少,而血清中和抗体水平逐渐上升达到1∶160之后又缓缓下降.A/Guangdong/2/06株8个片段的核苷酸序列显示,其与2005~2006年中国南部的禽流感分离株高度同源,与越南、泰国、印度尼西亚等分离到的禽流感分离株存在明显的差异.  相似文献   

11.
Currently, two neuraminidase (NA) inhibitors, oseltamivir and zanamivir, which must be administrated twice daily for 5 days for maximum therapeutic effect, are licensed for the treatment of influenza. However, oseltamivir-resistant mutants of seasonal H1N1 and highly pathogenic H5N1 avian influenza A viruses have emerged. Therefore, alternative antiviral agents are needed. Recently, a new neuraminidase inhibitor, R-125489, and its prodrug, CS-8958, have been developed. CS-8958 functions as a long-acting NA inhibitor in vivo (mice) and is efficacious against seasonal influenza strains following a single intranasal dose. Here, we tested the efficacy of this compound against H5N1 influenza viruses, which have spread across several continents and caused epidemics with high morbidity and mortality. We demonstrated that R-125489 interferes with the NA activity of H5N1 viruses, including oseltamivir-resistant and different clade strains. A single dose of CS-8958 (1,500 µg/kg) given to mice 2 h post-infection with H5N1 influenza viruses produced a higher survival rate than did continuous five-day administration of oseltamivir (50 mg/kg twice daily). Virus titers in lungs and brain were substantially lower in infected mice treated with a single dose of CS-8958 than in those treated with the five-day course of oseltamivir. CS-8958 was also highly efficacious against highly pathogenic H5N1 influenza virus and oseltamivir-resistant variants. A single dose of CS-8958 given seven days prior to virus infection also protected mice against H5N1 virus lethal infection. To evaluate the improved efficacy of CS-8958 over oseltamivir, the binding stability of R-125489 to various subtypes of influenza virus was assessed and compared with that of other NA inhibitors. We found that R-125489 bound to NA more tightly than did any other NA inhibitor tested. Our results indicate that CS-8958 is highly effective for the treatment and prophylaxis of infection with H5N1 influenza viruses, including oseltamivir-resistant mutants.  相似文献   

12.
Although previous publications suggest the 2009 pandemic influenza A (H1N1) virus was reassorted from swine viruses of North America and Eurasia, the immediate ancestry still remains elusive due to the big evolutionary distance between the 2009 H1N1 virus and the previously isolated strains. Since the unveiling of the 2009 H1N1 influenza, great deal of interest has been drawn to influenza, consequently a large number of influenza virus sequences have been deposited into the public sequence databases. Blast analysis demonstrated that the recently submitted 2007 South Dakota avian influenza virus strains and other North American avian strains contained genetic segments very closely related to the 2009 H1N1 virus, which suggests these avian influenza viruses are very close relatives of the 2009 H1N1 virus. Phylogenetic analyses also indicate that the 2009 H1N1 viruses are associated with both avian and swine influenza viruses circulating in North America. Since the migrating wild birds are preferable to pigs as the carrier to spread the influenza viruses across vast distances, it is very likely that birds played an important role in the inter-continental evolution of the 2009 H1N1 virus. It is essential to understand the evolutionary route of the emerging influenza virus in order to find a way to prevent further emerging cases. This study suggests the close relationship between 2009 pandemic virus and the North America avian viruses and underscores enhanced surveillance of influenza in birds for understanding the evolution of the 2009 pandemic influenza.  相似文献   

13.
目的细胞水平测试奥司他韦、利巴韦林和盐酸金刚乙胺对甲型流感H1N1病毒的抑制或杀伤作用。方法通过在MDCK细胞系和甲型H1N1病毒株间建立药物剂量-效应关系确定导致细胞死亡的效力与抑制病毒复制的效力的比值(治疗指数),测试药物的抗病毒效果。结果奥司他韦、利巴韦林和盐酸金刚乙胺对MDCK细胞的半数中毒浓度分别为(1134.7±186.8)μg/mL、(742.0±76.9)μg/mL、(94.6±1.9)μg/mL,对甲型H1N1病毒的治疗指数(TI)分别为71.19、24.9和3.12。结论奥司他韦对甲型H1N1病毒抑制作用最强,利巴韦林其次,盐酸金刚乙胺对甲型H1N1病毒抑制效果较弱。  相似文献   

14.
利用RT-PCR方法,从人H5N1亚型禽流感病毒安徽株扩增到了NS1基因,对其进行了克隆、序列测定和分析,并在原核系统高效表达和纯化了NS1蛋白。进化分析表明,A/Anhui/01/2005毒株与近些年国内分离的水禽H5N1病毒进化关系更为接近。NS1与福建、湖南分离的禽流感病毒同源性最高,分别达到99.1%和98.2%。序列分析表明,与病毒的致病性相关的92位氨基酸为Asp,与病毒的细胞因子抗性相关的80~84位氨基酸发生缺失,与断裂/多聚腺苷酸化特异性因子结合的基序改变为GFEWN,和病毒致死性相关的PL基序为ESEV。随后在大肠杆菌高效表达并纯化了NS1蛋白。NS1基因及其编码产物的特性分析以及在原核系统的表达,为进一步研究NS1的致病机制和抗病毒药物研制奠定了基础。  相似文献   

15.
The 2009 H1N1 pandemic has slowed down its spread after initial speed of transmission. The conventional swine influenza H1N1 virus (SIV) in pig populations worldwide needs to be differentiated from pandemic H1N1 influenza virus, however it is also essential to know about the exact role of pigs in the spread and mutations taking place in pig-to-pig transmission. The present paper reviews epidemiological features of classical SIV and its differentiation with pandemic influenza.  相似文献   

16.
We present here in silico studies on antiviral drug resistance due to a novel mutation of influenza A/H1N1 neuraminidase (NA) protein. Influenza A/H1N1 virus was responsible for a recent pandemic and is currently circulating among the seasonal influenza strains. M2 and NA are the two major viral proteins related to pathogenesis in humans and have been targeted for drug designing. Among them, NA is preferred because the ligand-binding site of NA is highly conserved between different strains of influenza virus. Different mutations of the NA active site residues leading to drug resistance or susceptibility of the virus were studied earlier. We report here a novel mutation (S247R) in the NA protein that was sequenced earlier from the nasopharyngeal swab from Sri Lanka and Thailand in the year 2009 and 2011, respectively. Another mutation (S247N) was already known to confer resistance to oseltamivir. We did a comparative study of these two mutations vis-a-vis the drug-sensitive wild type NA to understand the mechanism of drug resistance of S247N and to predict the probability of the novel S247R mutation to become resistant to the currently available drugs, oseltamivir and zanamivir. We performed molecular docking- and molecular dynamics-based analysis of both the mutant proteins and showed that mutation of S247R affects drug binding to the protein by positional displacement due to altered active site cavity architecture, which in turn reduces the affinity of the drug molecules to the NA active site. Our analysis shows that S247R may have high probability of being resistant.  相似文献   

17.
The spread of highly pathogenic H5N1 influenza virus in many Asian and European countries as well as its drug-resistance have raised serious worldwide concerns. In this paper, the structure-activity relationship between NA (neuraminidase) and its three inhibitors (DANA, zanamivir, and oseltamivir) was investigated. A homology model of H5N1-NA (BAE46950), which is the first reported oseltamivir-resistance virus strain, and the 108 homology-modeled 3D structures of chicken influenza H5N1 NAs downloaded from the website at , formed the molecular structural basis for the drug-resistance study. The multiple sequence and structure alignment for these NAs indicated that 11 functional residues were highly conserved except for AAF02313 with the mutated virus strain. However, the framework residues have remarkable mutations from N9-NA to H5N1-NA, and a few mutated residues were observed in different H5N1-NAs. A partially hydrophobic site S5 (formed by Ala246 and Thr247) in N9-NA is changed to a hydrophilic site (formed by Ala227 and Asn228) in H5N1-NA, while a hydrophilic site S6 (formed by Asn346 and Asn347) in N9-NA was replaced by a hydrophobic site (formed by Ala323 and Tyr324). All these mutations might be the reason for the oseltamivir-resistance by some H5N1 viruses. In order to find the possible drug-resistant H5N1 virus, similarity analysis was performed using the BAE46950 sequence as the benchmark template, and 21 sequences were found from the database of the 108 H5N1 NAs that had over 95% sequence similarity with BAE46950.  相似文献   

18.
The M2 proton channel is one of indispensable components for the influenza A virus that plays a vital role in its life cycle and hence is an important target for drug design against the virus. In view of this, the three-dimensional structure of the H1N1-M2 channel was developed based on the primary sequence taken from a patient recently infected by the H1N1 (swine flu) virus. With an explicit water-membrane environment, molecular docking studies were performed for amantadine and rimantadine, the two commercial drugs generally used to treat influenza A infection. It was found that their binding affinity to the H1N1-M2 channel is significantly lower than that to the H5N1-M2 channel, fully consistent with the recent report that the H1N1 swine virus was resistant to the two drugs. The findings and the relevant analysis reported here might provide useful structural insights for developing effective drugs against the new swine flu virus.  相似文献   

19.
禽流感特异性转移因子的制备及其免疫作用   总被引:3,自引:0,他引:3  
目的制备禽流感病毒特异性转移因子并探讨其对禽流感灭活疫苗的免疫增效作用。方法用禽流感病毒H5N1血清亚型灭活疫苗免疫鸡,用国标血凝抑制方法检测病毒特异性血凝抑制抗体效价。当抗体效价达到高峰时,翅静脉采取外周血,分离淋巴细胞并制备细胞单层、传代后获得禽流感病毒H5N1血清亚型特异性转移因子。用所获得的特异性转移因子进行疫苗免疫增效试验。结果采用本法可获得禽流感病毒特异性转移因子。免疫增效试验表明,在进行禽流感病毒灭活疫苗免疫的同时使用禽流感病毒特异性转移因子,可在一定幅度内提高禽流感病毒抗体水平并能延长抗体维持时间。不同给药途径比较试验表明,口服途径给药的疫苗增效作用优于注射途径给药。结论通过淋巴细胞体外培养可以制备禽流感病毒特异性转移因子。禽流感病毒H5N1血清亚型特异性转移因子对禽流感病毒灭活疫苗具有明显的增效作用,且口服途径给药的疫苗免疫增效作用优于注射途径给药。  相似文献   

20.
雍玮  乔梦凯  石利民  王璇  何敏  丁洁 《微生物学通报》2019,46(11):3058-3069
【背景】H5N1禽流感病毒可以感染人类导致重症呼吸道感染,致死率高。【目的】研究我中心确认的一例人感染高致病性禽流感H5N1病毒A/Nanjing/1/2015的可能起源及基因组分子特征。【方法】对病人痰液样本中的H5N1病毒进行全基因组测序,使用CLC Genomics Workbench 9.0对序列进行拼接,使用BLAST和MEGA 5.22软件进行同源性比对和各片段分子特征分析。【结果】该株禽流感病毒属于H5亚型的2.3.2.1c家系,其8个片段均与江浙地区禽类中分离的病毒高度同源,未发现有明显的重配。分子特征显示,该病毒血凝素(Hemagglutinin,HA)蛋白裂解位点为PQRERRRR/G,受体结合位点呈现禽类受体特点,但出现D94N、S133A和T188I氨基酸置换增强了病毒对人类受体的亲和性。神经氨酸酶(Neuraminidase,NA)蛋白颈部在49-68位缺失20个氨基酸,非结构蛋白1 (Non-structure protein,NS1)存在P42S置换和80-84位氨基酸的缺失。其他蛋白中也存在多个增强病毒致病力和对人类细胞亲和力的氨基酸突变。对耐药位点分析发现存在对奥司他韦的耐药突变H_274Y,病毒对金刚烷胺仍旧敏感。【结论】人感染高致病性禽流感H5N1病毒A/Nanjing/1/2015属于2.3.2.1c家系,禽类来源,关键位点较保守,但仍出现了多个氨基酸的进化与变异使其更利于感染人类。H5N1禽流感病毒进化活跃,持续动态监测不能放松。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号