首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignant disease with poor long-term survival rates. Major reason for poor disease outcome is the profound intrinsic resistance of PDAC cells to currently available treatment regimens. We recently found that a great majority of PDAC tumors and tumor cell lines express high basal level of tissue transglutaminase (TG2), a multifunctional protein implicated in apoptosis, cell attachment, cell survival, and cell motility functions. Based on these observations, we hypothesized that activation of endogenous TG2 can induce spontaneous apoptosis in PDAC cells. The results obtained suggested that activation of endogenous TG2 by calcium ionophore A23187 induced rapid and spontaneous apoptosis in PDAC cells. TG2-induced apoptosis was associated with release of apoptosis-inducing factor (AIF). The release of AIF from mitochondria led to its translocation to the nucleus and subsequent apoptosis of PDAC cells in caspase-independent manner. In conclusion, our results provide first evidence that TG2 can induce apoptosis in PDAC cells in an AIF-dependent and caspase-independent manner.  相似文献   

2.
The microRNA miRNA-1225-5p (miR-1225) is known as an essential modulator of the development of multiple cancers and other biological reactions. However, the understanding of its contribution to pancreatic cancer (PC) is insufficient. The effects of miR-1225 on PC cell survival and tumorigenesis in vivo as well as on the modulation of cell apoptosis were investigated. The expression of miR-1225 was upregulated in 20 human LC samples from acute myeloid leukemia patients with adverse prognosis and poor responses to therapy as well as in several human PC cell lines, as compared to that in healthy tissues, normal tissues, and normal pancreatic cells. In contrast, Janus kinase 1 (JAK1) expression was downregulated in human-derived PC samples and PC cell lines. EdU staining demonstrated that the aberrant expression of miR-1225 impaired the proliferation and survival of these two PC cell lines. The depletion of miR-1225 expression increased the apoptosis of both PANC-1 and AsPC-1 cells, as revealed by the TdT-mediated dUTP nick end labeling (TUNEL) staining and flow cytometry results. The results of dual-luciferase reporter assay indicated that miR-1225 targeted the 3′-untranslated region of JAK1 for silencing. Silencing of JAK1 expression counteracted the suppressive influence of miR-1225 depletion in PC cells. Thus, these results offer an insight into the biological and molecular mechanisms underlying the development of PC and provide potential strategies for PC treatment.  相似文献   

3.
Vascular endothelial growth factor receptor-2 (VEGFR2/KDR) is an important mediator of angiogenesis, and VEGFR2 mRNA is expressed in several pancreatic cancer cell lines. Deletion analysis of the VEGFR2 promoter in Panc-1, AsPC-1, and MiaPaCa-2 pancreatic cancer cells shows that the proximal region of the promoter is primarily responsible for VEGFR2 expression, and two GC-rich sites at -58 and -44 are critical elements in all three cell lines. Panc-1, AsPC-1, and MiaPaCa-2 cells also express Sp1, Sp3, and Sp4 proteins which bind to the GC-rich region of the VEGFR2 promoter in electrophoretic mobility shift and chromatin immunoprecipitation assays. RNA interference with small inhibitory RNAs for Sp1, Sp3, and Sp4 decreases VEGFR2 mRNA and reporter gene activity in transfection assays, confirming that VEGFR2 expression in pancreatic cancer cells is regulated by Sp proteins. These results suggest that VEGFR2 cannot only be targeted by receptor tyrosine kinase inhibitors but also by drugs that downregulate Sp proteins or block Sp-dependent transactivation.  相似文献   

4.
ABSTRACT

Pancreatic cancer (PC), highly malignant, is one of the most lethal cancers. Interferon-induced transmembrane protein 1 (IFITM1) has recently been regarded as a new molecular marker in human cancers. However, the role of IFITM1 in PC remains unclear. In this study, a short hairpin RNA (shRNA) was constructed to assess the effect of IFITM1 on PANC-1 and ASPC-1 cells. The level of IFITM1 was downregulated in cells transfected with shRNA targeting IFITM1 (sh-IFITM1). Silencing of IFITM1 significantly decreased cell viability, downregulated the level of Ki-67, arrested cell at G1/S phase, reduced the number of cells in S phase, and decreased cyclinD1, cyclinE, CDK2, and CDK4 levels. Moreover, Hoechst staining and Western blotting analysis showed that cell apoptosis was induced by IFITM1. IFITM1 knockdown suppressed the MAPK signaling pathway by downregulation of p-ERK, p-P38, and p-JNK levels. These findings suggested that IFITM1 could be considered a potential therapeutic target for PC.  相似文献   

5.
Several natural products have been demonstrated to both enhance the anti-tumor efficacy and alleviate the side effects of conventional chemotherapy drugs. Rhein, a main constituent of the Chinese herb rhubarb, has been shown to induce apoptosis in various cancer types. However, the exact pharmacological mechanisms controlling the influence of Rhein on chemotherapy drug effects in pancreatic cancer (PC) remain largely undefined. In this study, we found that Rhein inhibited the growth and proliferation of PC cells through G1 phase cell cycle arrest. Moreover, Rhein induced caspase-dependent mitochondrial apoptosis of PC cells through inactivation of the PI3K/AKT pathway. Combination treatment of Rhein and oxaliplatin synergistically enhanced apoptosis of PC cells through increased generation of intracellular reactive oxygen species (ROS) and inactivation of the PI3K/AKT pathway. Pre-treatment with the ROS scavenger N-acetyl-L-cysteine attenuated the combined treatment-induced apoptosis and restored the level of phosphorylated AKT, indicating that ROS is an upstream regulator of the PI3K/AKT pathway. The combination therapy also exhibited stronger anti-tumor effects compared with single drug treatments in vivo. Taken together, these data demonstrate that Rhein can induce apoptosis and enhance the oxaliplatin sensitivity of PC cells, suggesting that Rhein may be an effective strategy to overcome drug resistance in the chemotherapeutic treatment of PC.  相似文献   

6.
Advanced glycation end products (AGEs) form by a non-enzymatic reaction between reducing sugars and biological proteins, which play an important role in the pathogenesis of atherosclerosis. In this study, we assessed AGEs effects on human umbilical vein endothelial cells (HUVECs) growth, proliferation and apoptosis. Additionally, we investigated whether hepatocyte growth factor (HGF), an anti-apoptotic factor for endothelial cells, prevents AGEs-induced apoptosis of HUVECs. HUVECs were treated with AGEs in the presence or absence of HGF. Treatment of HUVECs with AGEs changed cell morphology, decreased cell viability, and induced DNA fragmentation, leading to apoptosis. Apoptosis was induced by AGEs in a dose- and time-dependent fashion. AGEs markedly elevated Bax and decreased NF-kappaB, but not Bcl-2 expression. Additionally, AGEs significantly inhibited cell growth through a pro-apoptotic action involving caspase-3 and -9 activations in HUVECs. Most importantly, pretreatment with HGF protected against AGEs-induced cytotoxicity in the endothelial cells. HGF significantly promoted the expression of Bcl-2 and NF-kappaB, while decreasing the activities of caspase-3 and -9 without affecting Bax level. Our data suggest that AGEs induce apoptosis in endothelial cells. HGF effectively attenuate AGEs-induced endothelial cell apoptosis. These findings provide new perspectives in the role of HGF in cardiovascular disease.  相似文献   

7.
Hyperglycemia significantly stimulates pancreatic islet endothelial cell apoptosis; however, the precise mechanisms are not fully understood. In the present study, treating pancreatic islet endothelial (MS-1) cells with high glucose (30 mmol/l) but not mannitol significantly increased the number of apoptotic cells as compared with a physiological glucose concentration (5.5 mmol/l). Hyperglycemia significantly stimulated the expression of inducible nitric oxide synthase (iNOS) and production of NO and peroxynitrite (ONOO), relevant to MS-1 cell apoptosis. Moreover, induced reactive nitrogen species (RNS) significantly increased the expression of bax, cleaved caspase-3 and poly adenosine diphosphate (ADP)-ribose polymerase (PARP) via JNK activation, but the expression of bcl-2 was not altered. Furthermore, SP600125 (a specific inhibitor of JNK) and 1400W (a specific inhibitor of iNOS) significantly attenuated cell apoptosis induced by high glucose. Therefore, hyperglycemia triggers MS-1 cell apoptosis by activating an intrinsic-dependent apoptotic pathway via RNS-mediated JNK activation.  相似文献   

8.
Pancreatic cancer is the fourth leading cause of cancer-related deaths in the United States. Identifying novel chemotherapeutic and chemopreventive approaches is critical in the prevention and treatment of cancers such as pancreatic cancer. Vitamin E succinate (VES) is a redox-silent analog of the fat-soluble vitamin alpha-tocopherol. In the present study, we explored the antiproliferative action of VES and its effects on inhibitor of apoptosis proteins in pancreatic cancer cells. We show that VES inhibits cell proliferation and induces apoptosis in pancreatic cancer cells. Further, we demonstrate that VES downregulates the expression of survivin and X-linked inhibitor of apoptosis proteins. The apoptosis induced by VES was augmented by siRNA-mediated inhibition of survivin in PANC-1 cells. In summary, our results suggest that VES targets survivin signaling and induces apoptosis in pancreatic cancer cells.  相似文献   

9.
Lung carcinoma is the leading cause of cancer-related mortalities worldwide, and present therapeutical interventions are not successful enough to treat this disease in many cases. Recent years have witnessed a surge in exploring natural compounds for their antiproliferative efficacy to expedite the characterization of novel anticancer chemotherapeutics. Swertia chirayita is a valued medicinal herb and possess intrinsic pharmaceutical potential. However, elucidation of its anticancer effects at molecular levels remains unclear and needs to be investigated. We assessed the anticancer and apoptotic efficacy of S. chirayita ethanolic extract (Sw-EtOH) on non-small cell lung cancer (NSCLC) A549 cells during this exploratory study. The results elucidated that S. chirayita extract induced toxic effects within lung cancer cells by ~1 fold during cytotoxicity and LDH release assay at a 400 μg/ml concentration. Sw-EtOH extract elevates the level of ROS, resulting in the disruption of Δψm and release of cytosolic cytochrome c by 3.15 fold. Activation of caspases-3, -8 & -9 also escalated by ~1 fold, which further catalyze the augmentation of PARP cleavage (~3 folds), resulting in a four-fold increase in Sw-EtOH induced apoptosis. The gene expression analysis further demonstrated that Sw-EtOH extracts inhibited JAK1/STAT3 signaling pathway by down-regulating the levels of JAK1 and STAT3 to nearly half a fold. Treatment of Sw-EtOH modulates the expression level of various STAT3 associated proteins, including Bcl-XL, Bcl-2, Mcl-1, Bax, p53, Fas, Fas-L, cyclinD1, c-myc, IL-6, p21 and p27 in NSCLC cells. Thus, our study provided a strong impetus that Sw-EtOH holds the translational potential of being further evaluated as efficient cancer therapeutics and a preventive agent for the management of NSCLC.  相似文献   

10.
目的:探讨血卟啉注射液(Hematoporphyrin Derivative,HPD)光动力疗法(Photodynamic Therapy,PDT)对体外培养的人胰腺癌细胞株PANC-1的生物作用。方法:实验分为4组,空白对照组、单纯HPD组、单纯光照组及HPD+PDT组。采用MTT法检测光动力作用后细胞的存活率,并用Annexin V-FITC/P I双染法检测其凋亡率。结果:在光敏剂浓度为5mg/L,光照剂量为10J/cm2时,光动力对PANC-1细胞达到最佳的实验效果,与对照组相比差异有显著性。在此实验参数条件下,流式细胞术(FCM)检测各组人胰腺癌细胞PANC-1凋亡率:HPD+PDT实验组达(36.40±4.21)%,明显高于单纯HPD(6.76±0.44)%,单纯PDT组(8.30±0.32)%及空白组(5.00±0.53)%三个对照组(P<0.05),三个对照组间差异无统计学意义(P>0.05)。结论:PDT光动力作用对体外培养人胰腺癌细胞PANC-1有明确抑制效应,并与HPD浓度及光照强度相关。  相似文献   

11.
The major heat shock protein, hsp70, is known to contribute to the mechanisms of cell protection against a variety of stress and cytotoxic factors, providing an increase of cell survival. Whether hsp70 could be implicated in the rescue of cells from stress-induced death proceeding on apoptotic pathway is not well established. Here we report that susceptibility of myeloid and lymphoid cell lines to apoptosis induced by heat shock or ethanol coincides with hsp70 content and can be modulated by changes in expression of this protein. Cells of lymphoid and myeloid lines differing in basal and inducible level of the protein were tested. The cells containing higher amounts of hsp70 (U937, Jurkat, Molt4) were more resistant to the apoptosis-inducing stimuli then cells which accumu-late lower amounts of the protein (HL60) and especially those lacking the protein (NSO). Inhibition of hsp70 accumulation by quercetin made cells more susceptible to the same apoptotic inducer. Enhancement of hsp70 expression by previous heating or by liposomal delivery of the exogenic protein to the cells lacking hsp70 made them more resistant to apoptosis. The possible mechanisms of the hsp70 protective effect in apoptosis are discussed.  相似文献   

12.
Patients with pancreatic cancer have little hope for cure because no effective therapies are available. Sansalvamide A is a cyclic depsipeptide produced by a marine fungus. We investigated the effect of a novel sansalvamide A analogue on growth, cell-cycle phases, and induction of apoptosis in human pancreatic cancer cells in vitro. The sansalvamide analogue caused marked time- and concentration-dependent inhibition of DNA synthesis and cell proliferation of two human pancreatic cancer cell lines (AsPC-1 and S2-013). The analogue induced G0/G1 phase cell-cycle arrest and morphological changes suggesting induction of apoptosis. Apoptosis was confirmed by annexin V binding. This novel sansalvamide analogue inhibits growth of pancreatic cancer cells through G0/G1 arrest and induces apoptosis. Sansalvamide analogues may be valuable for the treatment of pancreatic cancer.  相似文献   

13.
Jab1 overexpression is observed in many human cancers, but its physiological significance remains to be investigated. We reduced the level of Jab1 expression in pancreatic cancer cell lines, MIA PaCa-2 and PANC-1 by the RNA interference and found that Jab1-knockdown resulted in impaired cell proliferation and enhanced apoptosis regardless of the genotype of the tumor suppressor p53. This growth inhibition was rescued by the introduction of siRNA-resistant mouse Jab1 cDNA. Jab1-knocked-down cells expressed a higher level of c-myc, and additional depletion of c-myc rescued cells from Jab1-knockdown-mediated growth suppression. Thus, Jab1 overexpression contributes to pancreatic cancer cell proliferation and survival. Jab1 could be a novel target in cancer therapy.  相似文献   

14.
Therapeutic radiation is widely used in cancer treatments. The success of radiation therapy depends not only on the radiosensitivity of tumor cells but also on the radiosensitivity of endothelial cells lining the tumor vasculature. Vascular endothelial growth factor (VEGF) plays a critical role in protecting endothelial cells against a number of antitumor agents including ionizing radiation. Strategies designed to overcome the survival advantage afforded to endothelial cells by VEGF might aid in enhancing the efficacy of radiation therapy. In this report we examined the signaling cascade(s) involved in VEGF-mediated protection of endothelial cells against gamma-irradiation. gamma-Irradiation-induced apoptosis of human dermal microvascular endothelial cells (HDMECs) was predominantly mediated through the p38 MAPK pathway as an inhibitor of p38 MAPK (PD169316), and dominant negative mutants of p38 MAPK could significantly enhance HDMEC survival against gamma-irradiation. Inhibition of the PI3K and MAPK pathways markedly up-regulated gamma-irradiation-mediated p38 MAPK activation resulting in enhanced HDMEC apoptosis. In contrast, VEGF-treated HDMECs were protected from gamma-irradiation-induced apoptosis predominantly through the PI3K/Akt pathway. Bcl-2 expression was markedly elevated in VEGF-treated HDMECs, and it was significantly inhibited by the PI3K inhibitor LY294002. HDMECs exposed to irradiation showed a significant decrease in Bcl-2 expression. In contrast, VEGF-stimulated HDMECs, when irradiated, maintained higher levels of Bcl-2 expression. Taken together our results suggest that gamma-irradiation induces endothelial cell apoptosis predominantly via the activation of p38 MAPK, and VEGF protects endothelial cells against gamma-irradiation predominantly via the PI3K-Akt-Bcl-2 signaling pathway.  相似文献   

15.
16.
17.
A cell colony (IM95m) that produces hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), and interleukin-8 (IL-8) was cloned from gastric cancer cells (IM95 cell line). In culture medium, the highest levels of HGF, VEGF, and IL-8 were about 1.1, 0.9, and 0.17 ng/ml culture medium at 3 d from 10(5) cells. IM95m may be useful in elucidating the role of tumor cells in angiogenesis.  相似文献   

18.
In addition to inhibiting matrix metalloproteinases, tissue inhibitor of metalloproteinase-1 (TIMP-1) is involved in the regulation of cell growth and survival. To determine its mechanism of action, we investigated effects of TIMP-1 on cell proliferation and survival and signaling pathways induced by TIMP-1 in the human breast carcinoma T-47D cell line. Treatment of T-47D cells with TIMP-1 strongly inhibited apoptosis induced by serum deprivation, but did not affect cell proliferation. TIMP-1 induced phosphorylation of Akt and extracellular signal-regulated protein kinases (ERKs), but pertussis toxin and specific inhibitors of Src family tyrosine kinases, protein tyrosine kinases, and phosphatidylinositol-3 kinase (PI3 kinase) blocked the ability of TIMP-1 to activate Akt and ERKs as well as the anti-apoptotic effect of TIMP-1. We found that TIMP-1 enhanced the kinase activities of c-Src and PI3 kinase and that this enhancement was inhibited by pertussis toxin. Inhibition of ERK activation, however, resulted in a slight decrease of the TIMP-1-induced anti-apoptotic effect. These findings demonstrate that the ability of TIMP-1 to inhibit apoptosis in T-47D cells is mediated by the sequential activation of pertussis toxin-sensitive G protein, c-Src, PI3 kinase, and Akt.  相似文献   

19.
Mounting evidence supports that CSCs (cancer stem cells) play a vital role in cancer recurrence. Therefore elimination of CSCs is currently considered to be an important therapeutic strategy for complete remission. A major obstacle in CSC research is the obtainment of sufficient numbers of functional CSC populations. Here, we established a method to induce bulk pancreatic cancer cells to CSCs via heterochromatin modulation. Two pancreatic cancer cell lines Panc1 and Bxpc3 were cultured for 4 days in inducing medium (mTeSR containing FBS, B27, MEK inhibitor, GSK3 inhibitor, and VPA), and another 2 days in sphere culture medium (mTeSR supplemented with B27). Then the induced cells were dissociated into single cells and cultured in suspension in sphere culture medium. It was found that the majority of induced cells formed spheres which could grow larger and be passaged serially. Characterization of Panc1 sphere cells demonstrated that the sphere cells expressed increased pancreatic cancer stem cell surface markers and stem cell genes, were more resistant to chemotherapy, and were more tumorigenic in vivo, indicating that the induced sphere cells acquired CSC properties. Thus, the inducing method we developed may be used to obtain a sufficient number of CSCs from cancer cells, and contribute to the research for CSC-targeting therapy.  相似文献   

20.
In this study, we investigated the involvement of Akt and members of the mitogen-activated protein kinase (MAPK) superfamily, including ERK, JNK, and p38 MAPK, in gemcitabine-induced cytotoxicity in human pancreatic cancer cells. We found that gemcitabine induces apoptosis in PK-1 and PCI-43 human pancreatic cancer cell lines. Gemcitabine specifically activated p38 MAPK in a dose- and time-dependent manner. A selective p38 MAPK inhibitor, SB203580, significantly inhibited gemcitabine-induced apoptosis in both cell lines, suggesting that phosphorylation of p38 MAPK may play a key role in gemcitabine-induced apoptosis in pancreatic cancer cells. A selective JNK inhibitor, SP600125, failed to inhibit gemcitabine-induced apoptosis in both cell lines. MKK3/6, an upstream activator of p38 MAPK, was phosphorylated by gemcitabine, indicating that the MKK3/6-p38 MAPK signaling pathway is indeed involved in gemcitabine-induced apoptosis. Furthermore, gemcitabine-induced cleavage of the caspase substrate poly(ADP-ribose) polymerase was inhibited by pretreatment with SB203580, suggesting that activation of p38 MAPK by gemcitabine induces apoptosis through caspase signaling. These results together suggest that gemcitabine-induced apoptosis in human pancreatic cancer cells is mediated by the MKK3/6-p38 MAPK-caspase signaling pathway. Further, these results lead us to suggest that p38 MAPK should be investigated as a novel molecular target for human pancreatic cancer therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号