首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
In order to examine the effects of coordinated hydroxide ion and free hydroxide ion in configurational conversion of a tetraamine macrocyclic ligand complex, the kinetic of the cis-to-planar interconversion of cis-[Ni(isocyclam)(H2O)2]2+ (isocyclam = 1,4,7,11-tetraazacyclotetradecane) has been examined spectrophotometrically. All kinetic data have been satisfactorily fitted by the rate law, R = (k1KOH[OH]2 + k2[OH])(1 + KOH[OH])−1(cis-[Ni(isocyclam)(H2O)2]2+ + [Ni(isocyclam)(OH)]+), where k2 = (3.40 ± 0.12) × 103 dm3 mol−1 s−1 is almost equal to kOH determined in buffer solution (lowly basic media), KOH = 22.7 ± 1.4 dm3 mol−1 at I (ionic strength) = 0.10 mol dm−3 (NaClO4 + NaOH) and 25.0 °C. Rate constants, k2 and KOH, are functions of ionic strength, giving a good evidence for an intermolecular pathway. The reaction follows a free-base-catalyzed mechanism where nitrogen inversion, solvation and ring conformational changes are occurred.  相似文献   

2.
《Inorganica chimica acta》1988,150(1):81-100
The (NH3)5CoOC(NH2)23+ ion is consumed in water according to the rate law k(obs.) = k1 + k2[OH], where k1 = 4.0 × 10−5 s−1 and k2 = 14.2 M−1 s−1 (0–0.1 M [OH];μ = 1.1 M, NaClO4, 25 °C). A hitherto unrecognized intramolecular O- to N- linkage isomerization reaction has been detected. In strongly acid solution only aquation to (NH3)5CoOH23+ is observed, but in 0.1–1.0 M [OH], 7% of the directly formed products is the urea-N complex (NH3)5CoNHCONH22+ which has been isolated. In the neutral pH region a much greater proportion (25%) of the products is the urea-N species. These results are interpreted in terms of an urea-O to urea-N linkage isomerization reaction competing with hydrolysis for both spontaneous (k1) and base-catalyzed (k2) pathways; the rearrangement is not observed in strongly acidic solution (pH ⩽ 1) because the protonated N-bonded isomer (pKa ≈ 3) is unstable with respect to the O-bonded form. The appearance of the isomerization pathway as the pH is raised in the 0–6 region is commensurate with a rate increase which cannot be attributed to a contribution from the base catalysis term k2[OH]. It is argued that this observation establishes, for the spontaneous pathway, that hydrolysis and linkage isomerization are separate reaction pathways — there is no common intermediate. The product distribution and rate data lead to the complete rate law, k(obs.) = k1 + k2[OH] = (ks + kON) + (kOH + kON) [OH] for the reactions of the O-bonded isomers, where ks, kOH are the specific rates for hydrolysis, and kON, kON are the specific rates for O- to N-linkage isomerization, by spontaneous and base-catalyzed pathways respectively; kON = 1.3 × 10−5 s−1 and kON = 1.1 M−1 s−1 (μ = 1.0 M, NaClO4, 25 °C). The O- to N- linkage isomerization has been observed also for complexes of N-methylurea, N,N-dimethylurea and N-phenylurea, but not for the N,N′-dimethylurea species. There is an approximately statistical relationship among the data for −NH2 capture (versus H2O), while −NHR and −NR2 do not compete with water as nucleophiles for Co(III) in either the spontaneous or base-catalyzed hydrolysis processes. For each urea-O complex, O- to N-isomerization is a more significant parallel reaction in the spontaneous as opposed to the base-catalyzed pathway. This is interpreted as being indicative of more associative character in the spontaneous route to products, a conclusion supported by other evidence. Some activation parameter data have been recorded and the effect of the N-substitution on the rates of solvolysis (H2O, Me2SO) is discussed. The urea-N complexes have been isolated as their deprotonated forms, [(NH3)5CoNHCONRR′](ClO4)2·xH2O (R,R′ = H, CH3). They are kinetically inert in neutral to basic solution but in acid they protonate (H2O, pKa 2–3; μ = 1.0 M, 25 °C) and then isomerize rapidly back to their O-bonded forms. Some solvolysis accompanies this N- to O-rearrangement in H2O and Me2SO. Specific rates and activation parameters are reported. The kinetic data follow a rate law of the form kNO(obs.) = (k + kNO)[H+]/(Ka + [H+]) and the active species in the reaction is the protonated form; k, kNO are the specific rates for hydrolysis and isomerization, respectively. Proton NMR data establish that the site of protonation (in Me2SO) is the cobalt-bound nitrogen atom. For the unsubstituted urea species (NH3)5CoNH2CONH23+, diastereotopic exo-NH2 protons arising from restricted rotation about the CN bond are observed. The relevance to the mechanism of the linkage isomerization process is considered. 13C and 1H NMR and electronic absorption spectral data are presented, and distinctions between linkage isomers and the solution structures (electronic and conformational) are discussed. The urea-N/urea-O complex equilibrium is governed by the relation KNO(obs.) = KNO[H+]/[H+](Ka), where KNO is the equilibrium constant = [(NH35Co(urea-O)3+]/[(NH3)5Co(urea-N)3+]. Values for KNO(=kNO/kON = 260 and pKa ≈ 3 for the NH2CONH2 system are consistent with the stability of the N-isomer in feebly acidic to basic solution (e.g. pH 6, KNO(obs.) = 2.6 × 10−2) and instability in acid solution (e.g. pH 1, KNO(obs.) = 240). The equilibrium data for this and other urea complexes of (NH3)5Co(III) are contrasted with the result for the analogous Rh(III)NH2CONH2 system KNO ≈ 1).  相似文献   

3.
The preparation of the planar yellow [Ni([8]aneN2)2](ClO4)2 is described. The complex dissociates in basic solution, with rate = kOH[NiL][OH?] (L = 1,5-diazacyclo-octane). At 25 °C, kOH = 4.5 x 10?2 M?1 s?1 and the corresponding activation parameters are ΔH = 69.2 kJ mol?1 and ΔS298 = ?38.6 J K?1 mol?1. Acid catalysed dissociation in quite slow even in strongly acidic solutions. The kinetic data in this case can be fitted to the expression Kobs = ko + KH[H+], where ko relates to a solvolytic pathway and kH to the acid catalysed pathway. At 60 °C, Ko = 2 x 10?5 s?1 and kH is 2 x 10?5 M?1 s?1. Possible mechanisms for these reactions are considered.The Ni(II)/Ni(III) redox couple for NiLn+ is irreversible on Pt using MeCN as solvent.  相似文献   

4.
A detailed investigation on the oxidation of aqueous sulfite and aqueous potassium hexacyanoferrate(II) by the title complex ion has been carried out using the stopped-flow technique over the ranges, 0.01≤[S(IV)]T≤0.05 mol dm−3, 4.47≤pH≤5.12, and 24.9≤θ≤37.6 °C and at ionic strength 1.0 mol dm−3 (NaNO3) for aqueous sulfite and 0.01≤[Fe(CN)6 4−]≤0.11 mol dm−3, 4.54≤pH≤5.63, and 25.0≤θ≤35.3 °C and at ionic strength 1.0 or 3.0 mol dm−3 (NaNO3) for the hexacyanoferrate(II) ion. Both redox processes are dependent on pH and reductant concentration in a complex manner, that is, for the reaction with aqueous sulfite, kobs={(k1K1K2K3+k2K1K4[H+])[S(IV)]T]/([H+]2+K1[H+]+K1K2) and for the hexacyanoferrate(II) ion, kobs={(k1K3K4K5+k2K3K6[H+])[Fe(CN)6 4−]T)/([H+]2+K3[H+]+K3K4). At 25.0 °C, the value of k1′ (the composite of k1K3) is 0.77±0.07 mol−1 dm3 s−1, while the value of k2′ (the composite of k2K4) is (3.78±0.17)×10−2 mol−1 dm3 s−1 for aqueous sulfite. For the hexacyanoferrate(II) ion, k1′ (the composite of k1K5) is 1.13±0.01 mol−1 dm3 s−1, while the value of k2′ (the composite of k2K6) is 2.36±0.05 mol−1 dm3 s−1 at 25.0 °C. In both cases there was reduction of the cobalt(III) centre to cobalt(II), but there was no reduction of the molybdenum(VI) centre. k22, the self-exchange rate constant, for aqueous sulfite (as SO3 2−) was calculated to be 5.37×10−12 mol−1 dm3 s−1, while for Fe(CN)6 4−, it was calculated to be 1.10×109 mol−1 dm3 s−1 from the Marcus equations.  相似文献   

5.
The title complex undergoes decomposition in acidic aqueous solution resulting in equimolar concentration of aquapentaamminecobalt(III) and hexa- aquacobalt(II). The kinetic studies over the ranges of 0.048 M ⩽ [H+] ⩽ 0.385 M, 25 ⩽ θc ⩽ 41.5°C and at I = 0.5 M reveals that the intricate mechanism involves protonation equilibrium of the title complex, followed by a rate determining bridge cleavage. The further follow-up reaction is a fast electron transfer process to form products. The rate expression derived from the mechanism is kobs = k1K1[H+]/(1 + K1[H+]) where the values of k, and K, are found to be 8.9 × 10−4 s−1 and 3.5 M−1 respectively at 25 °C. The results are compared with that obtained for the decomposition reactions of mononuclear aquaammine complexes of cobalt(III).  相似文献   

6.
《Inorganica chimica acta》1986,123(4):237-241
The uncatalysed hydrolysis of 4-nitrophenyl L-leucinate has been studied in detail over a range of pH and temperature at I=0.1 M (KNO3). Base hydrolysis of the ester is strongly promoted by copper(II) ions. Rate constants have been obtained for the following reactions (where EH+ is the N- protonated ester and E is the free base form) EH+ + OH → products E + OH → products E + H2O → products CuE2+ + OH → products Base hydrolysis of the copper(II) complex CuE2+ is 3.8 × 105 times faster than that of E and 75 times faster than that of EH+ at 25 °C and I=0.1 M. Activation parameters for these reactions have been determined and possible mechanisms are considered.  相似文献   

7.
(H+ + K+)-ATPase-enriched membranes were prepared from hog gastric mucosa by sucrose gradient centrifugation. These membranes contained Mg2+-ATPase and p-nitrophenylphosphatase activities (68 ± 9 μmol Pi and 2.9 ± 0.6 μmol p-nitrophenol/mg protein per h) which were insensitive to ouabain and markedly stimulated by 20 mM KCl (respectively, 2.2- and 14.8-fold). Furthermore, the membranes autophosphorylated in the absence of K+ (up to 0.69 ± 0.09 nmol Pi incorporated/mg protein) and dephosphorylated by 85% in the presence of this ion. Membrane proteins were extracted by 1–2% (w/v) n-octylglucoside into a soluble form, i.e., which did not sediment in a 100 000 × g × 1 h centrifugation. This soluble form precipitated upon further dilution in detergent-free buffer. Extracted ATPase represented 32% (soluble form) and 68% (precipitated) of native enzyme and it displayed the same characteristic properties in terms of K+-stimulated ATPase and p-nitrophenylphosphatase activities and K+-sensitive phosphorylation: Mg2+-ATPase (μmol Pi/mg protein per h) 32 ± 9 (basal) and 86 ± 20 (K+-stimulated); Mg2+-p-nitrophenylphosphatase (μmol p-nitrophenol/mg protein per h) 2.6 ± 0.5 (basal) and 22.2 ± 3.2 (K+-stimulated); Mg2+-phosphorylation (nmol Pi/mg protein) 0.214 ± 0.041 (basal) and 0.057 ± 0.004 (in the presence of K+). In glycerol gradient centrifugation, extracted enzyme equilibrated as a single peak corresponding to an apparent 390 000 molecular weight. These findings provide the first evidence for the solubilization of (H+ + K+)-ATPase in a still active structure.  相似文献   

8.
Kinetic studies of the reduction of ferrioxamine B (Fe(Hdesf)+) by Cr(H2O)62+, V(H2O)62+, and dithionite have been performed. For Cr(H2O)62+ and V(H2O)62+, the rate is ?d[Fe(Hdesf)+]/dt = k[Fe(Hdesf)+][M2+]. For Cr(H2O)62+, k = 1.19 × 104 M?1 sec?1 at 25°C and μ = 0.4 M, and k is independent of pH from 2.6 to 3.5. For V(H2O)62+, k = 6.30 × 102 M?1 sec?1 at 25°C, μ = 1.0 M, and pH = 2.2. The rate is nearly independent of pH from 2.2 to 4.0. For Cr(H2O)62+ and V(H2O)62+, the activation parameters are ΔH = 8.2 kcal mol?1, ΔS ?12 eu and ΔH = 1.7 kcal mol?1, ΔS = ?40 eu (at pH 2.2) respectively. Reduction by Cr(H2O)62+ is inner-sphere, while reduction by V(H2O)62+ is outer-sphere. Reduction by dithionite follows the rate law ?d[Fe(Hdesf)+]/dt =kK12[Fe(Hdesf)+][S2O42?]12 where K is the equilibrium constant for dissociation of S2O42? into SO2? radicals. The value of k at 25°C and μ = 0.5 is 2.7 × 103 M?1 sec?1 at pH 5.8, 3.5 × 103 M?1 sec?1 at pH 6.8, and 4.6 × 103 M?1 sec?1 at pH 7.8, and ΔH = 6.8 kcal mol?1 and ΔS = ?19 eu at pH 7.8.  相似文献   

9.
There are five oxidation-reduction states of horseradish peroxidase which are interconvertible. These states are ferrous, ferric, Compound II (ferryl), Compound I (primary compound of peroxidase and H2O2), and Compound III (oxy-ferrous). The presence of heme-linked ionization groups was confirmed in the ferrous enzyme by spectrophotometric and pH stat titration experiments. The values of pK were 5.87 for isoenzyme A and 7.17 for isoenzymes (B + C). The proton was released when the ferrous enzyme was oxidized to the ferric enzyme while the uptake of the proton occurred when the ferrous enzyme reacted with oxygen to form Compound III. The results could be explained by assuming that the heme-linked ionization group is in the vicinity of the sixth ligand and forms a stable hydrogen bond with the ligand.The measurements of uptake and release of protons in various reactions also yielded the following stoichiometries: Ferric peroxidase + H2O2 → Compound I, Compound I + e? + H+ → Compound II, Compound II + e? + H+ → ferric peroxidase, Compound II + H2O2 → Compound III, Compound III + 3e? + 3H+ → ferric peroxidase.Based on the above stoichiometries and assuming the interaction between the sixth ligand and heme-linked ionization group of the protein, it was possible to picture simple models showing structural relations between five oxidation-reduction states of peroxidase. Tentative formulae are as follows: [Pr·Po·Fe-(II) $?PrH+·Po·Fe(II)] is for the ferrous enzyme, Pr·Po·Fe(III)OH2 for the ferric one, Pr·Po·Fe(IV)OH? for Compound II, Pr(OH?)·Po+·Fe(IV)OH? for Compound I, and PrH+·Po·Fe(III)O2? for Compound III, in which Pr stands for protein and Po for porphyrin. And by Fe(IV)OH?, for instance, is meant that OH? is coordinated at the sixth position of the heme iron and the formal oxidation state of the iron is four.  相似文献   

10.
The oxidation of thiocyanate by iron(V) (Fe(V)) was studied as a function of pH in alkaline solutions by a premix pulse radiolysis technique. The rates decrease with an increase in pH. The rate law for the oxidation of SCN by Fe(V) was obtained as −d[Fe(V)]/dt = k10{[H+]2/([H+]2 + K2[H+] + K2K3)}[Fe(V)][SCN], where k10 = 5.72 ± 0.19 × 106 M−1 s−1, pK2 = 7.2, and pK3 = 10.1. The reaction precedes via a two-electron oxidation, which converts Fe(V) to Fe(III). Thiocyanate reacts approximately 103× faster with iron(V) than does with iron(VI).  相似文献   

11.
We examined the effect of adsorbed monovalent ions on the surface charge of phosphatidylcholine (PC) – decylamine (DA) liposomal membranes. Surface charge density values were determined from electrophoretic mobility measurements of lipid vesicles performed at various pH levels. The interaction between solution ions and the PC-DA liposomal surface was described by a six component equilibrium model. The previously determined association constants of the -PO(-) and –N(+)(CH3)3 groups of PC with H+, OH-, Na+ and Cl- ions (K A1H, K B1OH, K A1Na, K B1C1) were used to calculate K B2OH, and K B2C1, the association constants of the –N(+)H3 group of DA with OH- and Cl- ions, providing an experimental verification for the proposed model.  相似文献   

12.
The mixed-metal trinuclear cluster cations [H3Ru2(C6Me6)2Os(C6H6)(O)]+ (1), [H3Ru2(1,2,4,5-C6H2Me4)2Os(p-MeC6H4iPr)(O)]+ (2) and [H3Ru2(1,2,4,5-C6H2Me4)2Os(C6H6)(O)]+ (3) have been synthesised from the corresponding dinuclear precursors [H3Ru2(arene)2]+ and the corresponding mononuclear complexes [Os(arene)(H2O)3]2+, isolated and characterised as the tetrafluoroborate and hexafluorophosphate salts. The cations 1, 2 and 3 are heteronuclear analogues of the cluster cation [H3Ru3(C6H6)(C6Me6)2(O)]+ that possesses a homonuclear metallic core. The single-crystal X-ray structure analyses of [1][BF4], [2][PF6] and [3][PF6] reveal an equiangular metal triangle despite the presence of an osmium atom in the metallic core.  相似文献   

13.
The pH dependence of the reaction of tris(hydroxymethyl)aminomethane (Tris) with the activated carbonyl compound 4-trans-benzylidene-2-phenyloxazolin-5-one (I) is given by the equation k′2 = kbKa(Ka + [H+]) + ka[OH?]Ka(Ka + [H+]), where Ka is the dissociation constant of TrisH+. Spectrophotometric experiments show that the Tris ester of α-benzamido-trans-cinnamic acid is formed quantitatively over a range of pH values, regardless of the relative contribution of kb and ka terms to k2. Hence, both terms refer to alcoholysis. While the mechanism of the reaction is not determined unequivocally in the present work, the magnitude of the kb term, together with its dependence on the basic form of Tris, suggests that ester formation is occurring by nucleophilic attack of a Tris hydroxyl group on the carbonyl carbon of the oxazolinone, with intramolecular catalysis by the Tris amino group. The rate enhancement due to this group is at least 102 and possibly of the order 106. This system is compared with other model systems for the acylation step of catalysis by serine esterases and proteinases.  相似文献   

14.
A phenylthiophenyl-bearing Ru(II) complex of [Ru(bpy)2(Hbptip)](PF6)2 {bpy?=?2,2′-bipyridine, Hbptip?=?2-(4-phenylthiophen-2-yl)-1H-imidazo[4,5-f][1,10]phenanthroline} was synthesized and characterized by elemental analysis, 1H NMR spectroscopy, and electrospray ionization mass spectrometry. The ground- and excited-state acid–base properties of the complex were studied by UV–visible absorption and photoluminescence spectrophotometric pH titrations and the negative logarithm values of the ground-state acid ionization constants were derived to be pK a1?=?1.31?±?0.09 and pK a2?=?5.71?±?0.11 with the pK a2 associated deprotonation/protonation process occurring over 3 pK a units more acidic than thiophenyl-free parent complex of [Ru(bpy)2(Hpip)]2+ {Hpip?=?2-phenyl-1H-imidazo[4,5-f][1,10]phenanthroline}. The calf thymus DNA-binding properties of [Ru(bpy)2(Hbptip)]2+ in Tris–HCl buffer (pH 7.1 and 50?mM NaCl) were investigated by DNA viscosities and density functional theoretical calculations as well as UV–visible and emission spectroscopy techniques of UV–visible and luminescence titrations, steady-state emission quenching by [Fe(CN)6]4?, DNA competitive binding with ethidium bromide, DNA melting experiments, and reverse salt effects. The complex was evidenced to bind to the DNA intercalatively with binding affinity being greater than those for previously reported analogs of [Ru(bpy)2(Hip)]2+, [Ru(bpy)2(Htip)]2+, and [Ru(bpy)2(Haptip)]2+ {Hip?=?1H-imidazo[4,5-f][1,10]phenanthroline, Htip?=?2-thiophenimidazo[4,5-f][1,10]phenanthroline, Haptip?=?2-(5-phenylthiophen-2-yl)-1H-imidazo[4,5-f][1,10]phenanthroline}.  相似文献   

15.
The dissociation constant (Kd) for CO from neuronal nitric oxide synthase heme in the absence of the substrate and cofactor was less than 10−3 μM. In the presence of

-Arg, it dramatically increased up to 1 μM. In the presence of inhibitors such as NG-nitro-

-arginine methyl ester and 7-nitroindazole (NI), the Kd value further increased up to more than 100 μM. Addition of the cofactor, 5,6,7,8-tetrahydrobiopterin (H4B), increased the Kd value by 10-fold in the presence of

-Arg, whereas it decreased the value to less than one 250th in the presence of NI. Addition of H4B increased the recombination rate constant (kon) for CO by more than two-fold in the presence of

-Arg or N6-(1-iminoethyl)-

-lysine, whereas it decreased the kon value by three-fold in the presence of

-thiocitrulline. Thus, the binding fashion of some of inhibitors, such as NI, may be different from that of

-Arg with respect to the H4B effect.  相似文献   

16.
We studied the influence of inorganic nitrogen sources (NO3 ? or NH4 +) and potassium deficiency on expression and activity of plasma membrane (PM) H+-ATPase in sorghum roots. After 15 d of cultivation at 0.2 mM K+, the plants were transferred to solutions lacking K+ for 2 d. Then, K+ depletion assays were performed in the presence or absence of vanadate. Further, PMs from K+-starved roots were extracted and used for the kinetic characterization of ATP hydrolytic activity and the immunodetection of PM H+-ATPase. Two major genes coding PM H+-ATPase (SBA1 and SBA2) were analyzed by real-time PCR. PM H+-ATPase exhibited a higher Vmax and Km in NH4 +-fed roots compared with NO3 ? -fed roots. The optimum pH of the enzyme was slightly lower in NO3 ? -fed roots than in NH4 +-fed roots. The vanadate sensitivity was similar. The expressions of SBA1 and SBA2 increased in roots grown under NH4 +. Concomitantly, an increased content of the enzyme in PM was observed. The initial rate of K+ uptake did not differ between plants grown with NO3 ? or NH4 +, but it was significantly reduced by vanadate in NH4 +-grown plants.  相似文献   

17.
A novel polymerizable organosilyl-modified Dawson-type polyoxometalate (POM) [α2-P2W17O61{CH2C(CH3)COO(CH2)3Si}2O]6− (1) was synthesized as both salt (Me2NH2-1) and H+ form (H-1). They were characterized with complete elemental analysis, thermogravimetric and differential thermal analysis (TG/DTA), FTIR, (1H, 13C, 29Si, 31P and 183W) NMR and n-butylamine titration method. H-1 was immobilized to a polymer network through free radical copolymerization with methyl methacrylate (MMA). The acidities of H-1 and hybrid copolymer (H-1-co-MMA) were evaluated using the Hammett indicators (dicinnamalacetone and benzalacetophenone; pKa values of the protonated indicators are −3.0 and −5.6, respectively). The pKa value of H-1 was estimated as that between −3.0 and −5.6 in CH3CN solution and H-1 was immobilized in H-1-co-MMA with the original acidity being retained. Glass transition point (Tg) and molecular weight distribution of H-1-co-MMA were affected by the used amount of H-1 because of the cross-linking effect of H-1.  相似文献   

18.
In order to examine the effects of coordinated hydroxide ion and free hydroxide ion in configurational conversion of a tetraamine macrocyclic ligand complex, the kinetics of the cis-to-planar interconversion of cis-[Ni(isocyclam)(H2O)2]2+ (isocyclam, 1,4,7,11-tetraazacyclotetradecane) has been studied spectrophotometrically in basic aqueous solution. The interconversion requires the inversion of one sec-NH center of the folded cis-complex to have the planar species. Kinetic data are satisfactorily fitted by the rate law, R = kOH[OH][cis-[Ni(isocyclam)(H2O)2]2+], where kOH = 3.84 × 103 dm3 mol−1 s−1 at 25.0 ± 0.1 °C with I = 0.10 mol dm−3 (NaClO4). The large ΔH, 61.7 ± 3.2 kJ mol−1, and the large positive ΔS, 30.2 ± 10.8 J K−1 mol−1, strongly support a free-base-catalyzed mechanism for the reaction.  相似文献   

19.
《Inorganica chimica acta》1988,149(1):139-145
The stoichiometry and kinetics of the reaction between [Cu(dien)(OH)]+ and [Fe(CN)6]3− in aqueous alkaline medium are described. The rate equation − (d[Fe(III)]/dt = {k1[OH]2[[Cu(dien)(OH)]+] + k2[OH] × [[Cu(dien)(OH)]+]2}([Fe(III)]/[Fe(II)]) (Fe(III) = [Fe(CN)6]3−; Fe(II) = [Fe(CN)6]4−, the 4:4:1 OH/Fe(III)/[Cu(dien)(OH)]+ stoichiometric ratio and the nature of the ultimate products identified in the reaction solution suggest the fast formation of a doubly deprotonated Cu(III)-diamido complex which slowly undergoes an internal redox process where the ligand is oxidised to the Schiff base H2NCH2CH2NCHCHNH.The [[Cu(dien)(OH)]+]2 term in the rate equation is explained with the formation of a transient μ-hydroxo mixed-valence Cu dimer. A two-electron internal reduction of the Cu(III) complex yielding a Cu(I) intermediate is suggested to account for the presence of monovalent copper in a precipitate which forms at relatively high reactant concentrations and in the absence of dioxygen.  相似文献   

20.
《Inorganica chimica acta》1987,130(2):157-162
The acid-catalysed dissociation rate constants for PbEGTA2− and CuEGTA2− complexes (where EGTA is ethylenebis(oxyethylenenitrilo) tetraacetic acid) were measured in acetic acid-acetate buffer medium (pH: 3.0–4.8) and perchloric acid solutions ([H+] = 0.05–0.15 M), respectively, at a constant ionic strength of 0.15 (NaClO4). The rate laws shown by the lead(II) and copper(II) complexes are of the form, Rate = {kd + kH[H+]}[complex] and Rate = {kd + kH2[H+]2}[complex], respectively. Enthalpy and entropy of activation for acid-independent and acid-catalysed pathways for both the complexes were obtained by the temperature-dependence studies of resolved rate constants in the 16–45°C range. The rate of dissociation of PbEGTA2− is not enhanced by increasing the concentration of acetate ion in the buffer, and the amount of total electrolyte in the reaction mixture has no pronounced effect on the dissociation rates of their the lead(II) or copper(II) complex. Attempts to study the kinetics of stepwise ligand unwrapping in the binuclear Cu2EGTA complex were unsuccessful due to the extremely rapid dissociation of this complex to yield mononuclear CuEGTA2−.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号