首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to assay the viability of electrically fused mesophyll protoplasts ofAvena sativa a technique was developed to determine adenylate levels in single protoplasts and fusion products. The results demonstrate that the intracellular ATP/ADP ratios are identical before and after fusion (values between 1.4 and 1.8) and that the time of the rounding up process is directly related to the ATP level of the hybrid. This was shown by the manipulation of the intracellular ATP/ADP ratio in the light using different effectors. Hybrids with an ATP/ADP ratio of 2.3 needed 54 s to round up completely; in the presence of antimycin (inhibition of both oxidative and light-dependent cyclic electron flow: ATP/ADP=1.1) or dibromothymoquinone (plastoquinone antagonist: ATP/ADP=1.0) the time for rounding up was slightly increased (64 s and 76 s respectively), whereas after preincubation with antimycin, dichlorophenyldimethylurea (inhibition of oxidative and light-dependent electron flow) or uncouplers (ATP/ADP=0.19–0.32) this process needed 128–153s for completion. These results are discussed in relation to the viability of electrically induced fusion products and to energy-dependent events involved in the process of fusion.  相似文献   

2.
Incubation of smooth muscle phosphorylated heavy meromyosin in the presence of myosin light chain kinase, calmodulin, ADP, and Ca2+ results in a decrease of the protein-bound phosphate. The dephosphorylation is not due to phosphatase activity and is dependent on the presence of ADP and the active ternary myosin light chain kinase complex. Using 32P-labeled phosphorylated 20,000-dalton light chains as the phosphate donor, the formation of ATP from ADP can be demonstrated. This reaction requires the presence of Ca2+, calmodulin, and myosin light chain kinase. These results indicate that myosin light chain kinase can catalyze a reverse reaction and form ATP from ADP and phosphorylated substrate. The rate of the reverse reaction, kcat/KLC approximately 0.21 min-1 microM-1, is considerably slower than the forward reaction under similar conditions and is therefore detectable only at relatively high concentrations of myosin light chain kinase. For the reverse reaction, KmADP is approximately 30 microM and ATP is a competitive inhibitor, KIATP approximately 88 microM. For the forward reaction, measured with both isolated light chains and intact myosin, KmATP is approximately 100 microM and ADP is a competitive inhibitor, KiADP approximately 140 microM (myosin) and 120 microM (light chains). Thus, the affinity of ATP for the forward and reverse reactions is similar, but the affinity of ADP is higher for the reverse reaction. From the light chain dependence of the two reactions, the following was calculated: forward, Km = 5 microM, kcat = 1720 min-1, and reverse, Km = 130 microM, kcat = 27 min-1. In contrast to the data obtained with isolated light chains, it is suggested that, with intact myosin as substrate, the Km term is primarily responsible for determining the rate of the reverse reaction. With light chains phosphorylated at serine 19 and threonine 18, it was shown that both sites act as a phosphate donor, although the reverse reaction for threonine 18 is slower than that for serine 19.  相似文献   

3.
The effects of modulated ADP/ATP and NADPH/NADP+ ratios, and of protein kinase inhibitors, on the in vitro reformation of phototransformable protochlorophyllide, i.e. the aggregated ternary complexes between NADPH, protochlorophyllide, and NADPH-protochlorophyllide oxidoreductase (POR, EC 1.3.1.33), in etioplast membranes isolated from dark-grown wheat (Triticum aestivum) were investigated. Low temperature fluorescence emission spectra (–196 °C) were used to determine the state of the pigments. The presence of spectral intermediates of protochlorophyllide and the reformation of phototransformable protochlorophyllide were reduced at high ATP, but favoured by high ADP. Increased ADP level partly prevented the chlorophyllide blue-shift. The protein kinase inhibitor K252a prevented reformation of phototransformable protochlorophyllide without showing any effect on the chlorophyllide blue-shift. Addition of NADPH did not overcome the inhibition. The results indicate that protein phosphorylation plays a role in the conversion of the non-phototransformable protochlorophyllide to POR-associated phototransformable protochlorophyllide. The possible presence of a plastid ADP-dependent kinase, the activity of which favours the formation of PLBs, is discussed. Reversible protein phosphorylation is suggested as a regulatory mechanism in the prolamellar body formation and its light-dependent dispersal by affecting the membrane association of POR. By the presence of a high concentration of phototransformable protochlorophyllide, prolamellar bodies can act as light sensors for plastid development. The modulation of plastid protein kinase and protein phosphatase activities by the NADPH/NADP+ ratio is suggested. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
The influence of nucleotides on 2,4-dinitrophenol (DNP)-induced K+ efflux from intact rat liver mitochondria has been studied. ATP and ADP at micromolar concentrations were found to inhibit mitochondrial potassium transport, whereas GTP, GDP, CTP, and UTP did not show tha same effect. The values of half-maximal inhibition (IC50) were approximately 20 microM for ATP and approximately 60 microM for ADP. It is suggested that adenine nucleotides exert their inhibitory action at the matrix side of the inner mitochondrial membrane since the inhibitor of adenine nucleotide translocase atractyloside at concentration of 1 microM completely removed the inhibitory effect of ATP and ADP. The mitochondrial ATPase inhibitor oligomycin (2 microg/ml) was found to reduce slightly the rate of DNP-induced K+ efflux and had no effect on inhibition by adenine nucleotides; the latter was insensitive to Mg2+ and the changes in pH. It seems likely that the regulation of potassium transport is not due to phosphorylation of the channel-forming protein but to binding of the nucleotides in specific regulatory sites. The possibility of potassium efflux from mitochondria in the presence of uncoupler via the ATP-dependent potassium channel is discussed.  相似文献   

5.
G Swarup  D L Garbers 《Biochemistry》1983,22(5):1102-1106
Porcine rod outer segment (ROS) proteins were phosphorylated in the presence of [gamma-32P]ATP and Mg2+, separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and detected by autoradiography. The phosphorylation of rhodopsin, the major protein-staining band (Mr approximately 34 000-38 000), was markedly and specifically increased by exposure of rod outer segments to light; various guanine nucleotides (10 microM) including GMP, GDP, and GTP also specifically increased rhodopsin phosphorylation (up to 5-fold). Adenine nucleotides (cyclic AMP, AMP, and ADP at 10 microM) and 8-bromo-GMP (10 microM) or cyclic 8-bromo-GMP (10 microM) had no detectable stimulatory effect on rhodopsin phosphorylation. GTP increased the phosphorylation of rhodopsin at concentrations as low as 100 nM, and guanosine 5'-(beta, gamma-imidotriphosphate), a relatively stable analogue of GTP, was nearly as effective as GTP. Maximal stimulation of rhodopsin phosphorylation by GTP was observed at 2 microM. GMP and GDP were less potent than GTP. Both cyclic GMP and GMP were converted to GTP during the time period of the protein phosphorylation reaction, suggestive of a GTP-specific effect. Transphosphorylation of guanine nucleotides by [32P]ATP and subsequent utilization of [32P]GTP as a more effective substrate were ruled out as an explanation for the guanine nucleotide stimulation. With increasing concentrations of ROS proteins, the phosphorylation of rhodopsin was nonlinear, whereas in the presence of GTP (2 microM) linear increases in rhodopsin phosphorylation as a function of added ROS protein were observed. These results suggest that GTP stimulates the phosphorylation of rhodopsin by ATP and that a GTP-sensitive inhibitor (or regulator) of rhodopsin phosphorylation may be present in ROS.  相似文献   

6.
The method of centrifugation of chloroplast thylakoids through silicone fluid, previously used to estimate the uptake of solutes by thylakoids, is shown to be an excellent method for measuring binding of nucleotides to thylakoids. This binding, which is probably an exchange (Harris, D. A. and Slater, E. C. (1975) Biochim. Biophys. Acta 387, 335-348), is enhanced by light and is sensitive to uncoupling. Half-maximal binding of adenosine 5'-triphosphate (ATP) or adenosine 5'-diphosphate (ADP) at 10 mjM was reached within less than 0.1 s. With illumination times sufficient to elicit maximal binding, saturation of the site(s) is approached at 20 muM nucleotide and dissociation constants of 5 muM and 7 muM were calculated for ADP and ATP, respectively. At saturation, the binding corresponds to 1 mol/mol of coupling factor 1 or less. Although the light-dependent binding of ADP does not require Mg2+, that of ATP is markedly enhanced by Mg2+. A 10-fold molar excess of guanosine di- or triphosphate or adenyl-5'-yl imidodiphosphate had little effect on the binding. Adenosine 5'-phosphosulfate, a competitive inhibitor of phosphorylation with respect to ADP, decreases the binding. Thylakoids, previously illuminated in the absence of added nucleotides, retain the capacity to bind ADP or ATP in the dark long after the H+ electrochemical gradient has decayed. The conformation of coupling factor 1 in darkened thylakoids following illumination in the absence of added nucleotides may thus differ from that in thylakoids either illuminated in the presence of nucleotides or kept in the dark. Approximately 20% of the ADP bound to coupling factor 1 in thylakoids is converted to ATP by a 2-s illumination. Bound inorganic phosphate, derived either from ATP or from inorganic phosphate itself, serves as the phosphoryl donor. Bound ADP may, therefore, be of catalytic significance in the mechanism of phosphorylation.  相似文献   

7.
The process of ATP or GTP synthesis by bovine heart submitochondrial particles involves the binding of ADP or GDP to 3 exchangeable sites I, II, and III, and only upon substrate occupation of site III does rapid ATP or GTP synthesis take place. The dissociation constants determined for ADP were KADPI less than or equal to 10(-8) M, KADPII approximately 10(-7) M, and KADPIII (equivalent to apparent KADPm), approximately 3 x 10(-6) M in the low Km mode and KADPIII approximately 150 x 10(-6) M in the high Km mode. For GDP, these constants were KGDPI approximately 10(-6)-10(-5) M, KGDPII approximately 10(-4) M, and KGDPIII approximately 10(-3) M when NADH was the respiratory substrate (Matsuno-Yagi, A., and Hatefi, Y. (1990) J. Biol. Chem. 265, 82-88). Because of its low affinity for the above binding sites, GDP at micromolar concentrations does not lead to GTP synthesis. However, as shown in this paper, micromolar [GDP] undergoes phosphorylation in the presence of micromolar concentrations of ADP. Under these conditions, both ATP and GTP are synthesized. GDP inhibits ATP synthesis with KGDPi congruent to 7 microM, while ADP promotes GTP synthesis in a reaction that requires inorganic phosphate (apparent KPim = 2-3 mM) and is inhibited by uncouplers and inhibitors of the ATP synthase complex. The ADP-promoted GTP synthesis exhibited an "apparent" KGDPm = 4 microM and an "apparent" Vmax = 11 nmol of GTP (min.mg of protein)-1. These results were interpreted to mean that (a) micromolar [ADP] occupies sites I and II, allowing site III to bind and phosphorylate GDP, and (b) the KGDPm and Vmax calculated under these conditions represent values for the low Km-low Vmax mode of GTP synthesis, which in the absence of ADP is not detectable because of the positive cooperativity phase of GTP synthesis with the high KGDPII approximately 10(-4) M.  相似文献   

8.
The binding of the substrates, ATP and ribose-5-P, and the most effective inhibitor, ADP, to phosphoribosylpyrophosphate synthetase from Salmonella typhimurium was characterized using equilibrium dialysis of these compounds labeled with 32P. In the absence of ribose-5-P, ATP, ADP, and the ATP analogue alpha,beta-methylene ATP each bind cooperatively with half-saturation at 50 to 90 microM and Hill coefficients of 1.5 to 2. We propose that all three compounds bind at the same set of sites, which are presumably the active sites. When ribose-5-P was added, methylene ATP and ADP binding at these sites became tighter (Kd approximately 3 to 6 microM at 10 mM ribose-5-P) and lost its cooperativity. In the presence of ribose-5-P, ADP, but not methylene ATP, bound to a second site with half-saturation at approximately 150 microM and a Hill coefficient greater than 3. This result confirms the existence of an allosteric ADP site, which was previously postulated from kinetic studies (Switzer, R. L., and Sogin, D. C. (1973) J. Biol. Chem. 248, 1063-1073). Binding of ribose-5-P could not be detected in the absence of nucleotides, but it was readily measured in their presence. The apparent Kd of ribose-5-P varied from greater than 1 mM to approximately 5 microM as the concentration of either ADP or methylene ATP was increased from 0 to 2 mM. Inhibition of the enzyme by action of ADP at both active and allosteric sites could be observed kinetically.  相似文献   

9.
The effect of aurovertin on the binding parameters of ADP and ATP to native F1 from beef heart mitochondria in the presence of EDTA has been explored. Three exchangeable sites per F1 were titrated by ADP and ATP in the absence or presence of aurovertin. Curvilinear Scatchard plots for the binding of both ADP and ATP were obtained in the absence of aurovertin, indicating one high affinity site (Kd for ADP = 0.6-0.8 microM; Kd for ATP = 0.3-0.5 microM) and two lower affinity sites (Kd for ADP = 8-10 microM; Kd for ATP = 7-10 microM). With a saturating concentration of aurovertin capable of filling the three beta subunits of F1, the curvilinearity of the Scatchard plots was decreased for ATP binding and abolished for ADP binding, indicating homogeneity of ADP binding sites in the F1-aurovertin complex (Kd for ADP = 2 microM). When only the high affinity aurovertin site was occupied, maximal enhancement of the fluorescence of the F1-aurovertin complex was attained with 1 mol of ADP bound per mol of F1 and maximal quenching for 1 mol of ATP bound per mol of F1. When the F1-aurovertin complex was incubated with [3H]ADP followed by [14C]ATP, full fluorescence quenching was attained when ATP had displaced the previously bound ADP. In the case of the isolated beta subunit, both ADP and ATP enhanced the fluorescence of the beta subunit-aurovertin complex. The Kd values for ADP and ATP in the presence of EDTA were 0.6 mM and 3.7 mM, respectively; MgCl2 decreased the Kd values to 0.1 mM for both ADP and ATP. It is postulated that native F1 possesses three equivalent interacting nucleotide binding sites and exists in two conformations which are in equilibrium and recognize either ATP (T conformation) or ADP (D conformation). The negative interactions between the nucleotide binding sites of F1 are strongest in the D conformation. Upon addition of aurovertin, the site-site cooperativity between the beta subunits of F1 is decreased or even abolished.  相似文献   

10.
Axonemal dyneins are force-generating ATPases that produce ciliary and flagellar movement. A dynein has large heavy chain(s) in which there are multiple (4-6) ATP-binding consensus sequences (P-loops) as well as intermediate and light chains, constituting a very large complex. We purified a monomeric form of dynein (dynein-a) that has at least three light chains from 14S dyneins of Tetrahymena thermophila and characterized it. In in vitro motility assays, dynein-a rotated microtubules around their longitudinal axis as well as translocated them with their plus-ends leading. ATPase activity at 1 mM ATP was doubled in the presence of a low level of ADP (> or = 20 microM). Both ATPase activity and translocational velocities in the presence of ADP (> or = 20 microM) fit the Michaelis-Menten equation well. However, in the absence of ADP (< 0.1 microM), neither of the activities followed the Michaelis-Menten-type kinetics, probably due to the effect of two ATP-binding sites. Our results also indicate that dynein-a has an ATP-binding site that is very sensitive to ADP and affects ATP hydrolysis at the catalytic site. This study shows that a monomeric form of a dynein molecule regulates its activity by direct binding of ATP and ADP to itself, and thus the dynein molecule has an intramolecular regulating system.  相似文献   

11.
Adenine nucleotides displace the binding of the selective adenosine A-1 receptor ligand [3H]cyclopentyladenosine (CPA) to rat brain membranes in a concentration-dependent manner, with the rank order of activity being ATP greater than ADP greater than AMP. Binding was also displaced by GTP, ITP, adenylylimidodiphosphate (AppNHp), 2-methylthioATP, and the beta-gamma-methylene isostere of ATP, but was unaffected by the alpha-beta-methylene isosteres of ADP and ATP, and UTP. At ATP concentrations greater than 100 microM, the inhibitory effects on CPA binding were reversed, until at 2 mM ATP, specific binding of CPA was identical to that seen in controls. Concentrations of ATP greater than 10 mM totally inhibited specific binding. Inclusion of the catabolic enzyme adenosine deaminase in the incubation medium abolished the inhibitory effects of ATP, indicating that these were due to adenosine formation, presumably due to ectonucleotidase activity. The inhibitory effects were also attenuated by the alpha-beta-methylene isostere of ATP, an ectonucleotidase inhibitor. Adenosine deaminase, alpha-beta-methylene ATP (100 microM), and beta-gamma-methylene ATP (100 microM) had no effect on the "stimulatory" phase of binding, although GTP (100 microM) slightly attenuated it. Comparison of the binding of [3H]CPA in the absence and presence of 2 mM ATP by saturation analysis showed that the KD and apparent Bmax values were identical. Examination of the pharmacology of the control and "ATP-dependent" CPA binding sites showed slight changes in binding of adenosine agonists and antagonists. The responses observed with high concentrations of ATP were not observed with GTP, AppNHp, the chelating agents EDTA and EGTA, or inorganic phosphate. The divalent cations Mg2+ and Ca2+ at 10 mM attenuated the stimulatory actions of high (2 mM) concentrations of ATP, whereas EGTA and EDTA (10 mM) enhanced the "stimulatory" actions of ATP. EDTA (10 mM) abolished the inhibitory effects of ATP, indicating a specific dependence on Mg2+ for the inhibitory response. The effects of ATP on [3H]CPA binding were reversible for antagonists but not agonists. The mechanism by which ATP reverses its own inhibitory action on adenosine A-1 radioligand binding is unclear, and from the observed actions of the divalent cations and chelating agents probably does not involve a phosphorylation-dependent process.  相似文献   

12.
Zharova TV  Vinogradov AD 《Biochemistry》2006,45(48):14552-14558
The presence of medium Pi (half-maximal concentration of 20 microM at pH 8.0) was found to be required for the prevention of the rapid decline in the rate of proton-motive force (pmf)-induced ATP hydrolysis by Fo.F1 ATP synthase in coupled vesicles derived from Paracoccus denitrificans. The initial rate of the reaction was independent of Pi. The apparent affinity of Pi for its "ATPase-protecting" site was strongly decreased with partial uncoupling of the vesicles. Pi did not reactivate ATPase when added after complete time-dependent deactivation during the enzyme turnover. Arsenate and sulfate, which was shown to compete with Pi when Fo.F1 catalyzed oxidative phosphorylation, substituted for Pi as the protectors of ATPase against the turnover-dependent deactivation. Under conditions where the enzyme turnover was not permitted (no ATP was present), Pi was not required for the pmf-induced activation of ATPase, whereas the presence of medium Pi (or sulfate) delayed the spontaneous deactivation of the enzyme which was induced by the membrane de-energization. The data are interpreted to suggest that coupled and uncoupled ATP hydrolysis catalyzed by Fo.F1 ATP synthases proceeds via different intermediates. Pi dissociates after ADP if the coupling membrane is energized (no E.ADP intermediate exists). Pi dissociates before ADP during uncoupled ATP hydrolysis, leaving the E.ADP intermediate which is transformed into the inactive ADP(Mg2+)-inhibited form of the enzyme (latent ATPase).  相似文献   

13.
S6K1 is a member of the AGC subfamily of serine-threonine protein kinases, whereby catalytic activation requires dual phosphorylation of critical residues in the conserved T-loop (Thr-229) and hydrophobic motif (Thr-389). Previously, we described production of the fully activated catalytic kinase domain construct, His(6)-S6K1alphaII(DeltaAID)-T389E. Now, we report its kinetic mechanism for catalyzing phosphorylation of a model peptide substrate (Tide, RRRLSSLRA). First, two-substrate steady-state kinetics and product inhibition patterns indicated a Steady-State Ordered Bi Bi mechanism, whereby initial high affinity binding of ATP (K(d)(ATP)=5-6 microM) was followed by low affinity binding of Tide (K(d)(Tide)=180 microM), and values of K(m)(ATP)=5-6 microM and K(m)(Tide)=4-5 microM were expressed in the active ternary complex. Global curve-fitting analysis of ATP, Tide, and ADP titrations of pre-steady-state burst kinetics yielded microscopic rate constants for substrate binding, rapid chemical phosphorylation, and rate-limiting product release. Catalytic trapping experiments confirmed rate-limiting steps involving release of ADP. Pre-steady-state kinetic and catalytic trapping experiments showed osmotic pressure to increase the rate of ADP release; and direct binding experiments showed osmotic pressure to correspondingly weaken the affinity of the enzyme for both ADP and ATP, indicating a less hydrated conformational form of the free enzyme.  相似文献   

14.
The regulation of the rate of mitochondrial oxidative phosphorylation and arsenylation was studied at two external free Ca2+ concentrations. The rate of arsenate-stimulated respiration in absence of added ADP was not affected by external 10(-9) and 10(-6) M Ca2+ levels or carboxyatractyloside, while state 3 respiration was profoundly modified. In addition, the kinetic analysis showed that the rate of arsenylation in the presence of ADP was more efficient (Vm/Km ratio 3.5 times higher) in the catalytic process than phosphorylation. Therefore, this suggests that the activity of the ATP/ADP carrier is importantly controlled by Ca2+. The evaluation of the control in phosphorylation showed that the flux-control coefficients (Ci) exerted by the ATP/ADP carrier (ranged between 0.23 and 0.48) and the ATP synthase (0.05-0.57) were modified in a reciprocal way by Ca2+ and Pi concentrations. This suggests that these two enzymes are coupling sequentially through a common intermediate, the intramitochondrial ATP/ADP ratio. Other important steps controlling phosphorylation were the b-c1 complex (Ci = 0.30) and the cytochrome oxidase (Ci = 0.23) but they were not modified by Ca2+. It was also found that the main step controlling arsenylation was the ATP synthase (Ci = 0.74). The increment in the inorganic arsenate concentration induced a diminution in the control exerted by the ATP synthase (from 0.73 to 0.56). The results suggest that Ca2+ and Pi (or inorganic arsenate) could be regulated by ATP synthesis through an activating effect on ATP/ADP carrier and/or ATP synthase.  相似文献   

15.
We used the patch-clamp technique to study the effects of ATP on the small-conductance potassium channel in the apical membrane of rat cortical collecting duct (CCD). This channel has a high open probability (0.96) in the cell-attached mode but activity frequently disappeared progressively within 1-10 min after channel excision (channel "run-down"). Two effects of ATP were observed. Using inside-out patches, low concentrations of ATP (0.05-0.1 mM) restored channel activity in the presence of cAMP-dependent protein kinase A (PKA). In contrast, high concentrations (1 mM) of adenosine triphosphate (ATP) reduced the open probability (Po) of the channel in inside-out patches from 0.96 to 0. 1.2 mM adenosine diphosphate (ADP) also blocked channel activity completely, but 2 mM adenosine 5'-[beta,gamma-imido]triphosphate (AMP-PNP), a nonhydrolyzable ATP analogue, reduced Po only from 0.96 to 0.87. The half-maximal inhibition (Ki) of ATP and ADP was 0.5 and 0.6 mM, respectively, and the Hill coefficient of both ATP and ADP was close to 3. Addition of 0.2 or 0.4 mM ADP shifted the Ki of ATP to 1.0 and 2.0 mM, respectively. ADP did not alter the Hill coefficient. Reduction of the bath pH from 7.4 to 7.2 reduced the Ki of ATP to 0.3 mM. In contrast, a decrease of the free Mg2+ concentration from 1.6 mM to 20 microM increased the Ki of ATP to 1.6 mM without changing the Hill coefficient; ADP was still able to relieve the ATP-induced inhibition of channel activity over this low range of free Mg2+ concentrations. The blocking effect of ATP on channel activity in inside-out patches could be attenuated by adding exogenous PKA catalytic subunit to the bath. The dual effects of ATP on the potassium channel can be explained by assuming that (a) ATP is a substrate for PKA that phosphorylates the potassium channel to maintain normal function. (b) High concentrations of ATP inhibit the channel activity; we propose that the ATP-induced blockade results from inhibition of PKA-induced channel phosphorylation.  相似文献   

16.
Platelets, on activation by endothelial damage, release ADP, ATP, serotonin, epinephrine, and norepinephrine. Although ATP is known to augment the action of norepinephrine in cardiovascular and endocrine systems, the possible interaction between ATP and catecholamines in regulation of platelet reactivity has not been reported. The addition of ATP (1-5 microM) to human platelet-rich plasma did not induce platelet aggregation; however, it selectively augmented the aggregatory response to norepinephrine and epinephrine, but not to serotonin. This potentiating action of ATP was dose dependent and was not due to contamination by, or hydrolysis to, ADP. The action of ATP was blocked by 10 microM of adenosine 3'-phosphate 5'-phosphosulfate, a selective P(2)Y(1) receptor antagonist. ATP alone did not cause release of intracellular Ca(2+), but produced a significant Ca(2+) response in the presence of norepinephrine. In contrast, the P(2)X(1) receptor agonists P(1),P(6)-diadenosine-5' hexophosphate and alpha,beta-methylene-ATP had no effect on norepinephrine-induced platelet aggregation even when added at 100 microM. This synergistic interaction between ATP and norepinephrine in stimulating platelet aggregation may have significant clinical implications and suggests a prothrombotic role for ATP in stress.  相似文献   

17.
In the absence of added calcium, inhibition of NAD-specific isocitrate dehydrogenase by ATP occurred without ADP (I0.5 = 1.8 mM) and with 0.2 mM ADP3- (I0.5 = 1.0 mM) at subsaturating substrate concentrations at pH 7.4. Inhibition by ATP was competitive with NAD+ in the presence and absence of ADP and was not reversed by magnesium citrate. No reversal of ATP inhibition by free Ca2+ was observed in the presence of ADP (0.2 mM). However, when ADP was absent, increasing Ca2+ first caused progressive reversal of ATP inhibition followed by activation by ATP. Without ADP, the S0.5 for calcium activation was 80-140 microM at ATP concentrations between 0.6 and 3.0 mM. The S0.5 for ATP activation, in the absence of ADP, was 1.1 and 2.1 microM when free Ca2+ was held constant at 0.1 and 1.0 mM, respectively. As in activation by ADP, ATP decreased the S0.5 for magnesium isocitrate without affecting V. However, in contrast to ADP, the activation by ATP occurred without lowering the Hill coefficient for the substrate. GDP activated the enzyme at relatively high concentrations of Ca2+ but not without added Ca2+.  相似文献   

18.
Adenosine 5'-O-(3-thio)triphosphate (ATP gamma S) has been shown to be a potent inhibitor of Escherichia coli succinyl-CoA synthetase. This inhibition was competitive with respect to ATP and GTP (Ki values of 0.8 and 0.7 microM, respectively) and mixed with respect to CoA and succinate. ATP gamma S previously had been shown to be a weak substrate of the enzyme, probably because of the relatively sluggish reactivity of the thiophosphoryl enzyme intermediate (Wolodko, W. T., Brownie, E. R., O'Connor, M. D., and Bridger, W. A. (1983) J. Biol. Chem. 258, 14116-14119). In our work, reaction of thiophosphoryl enzyme with ADP was greatly stimulated by succinyl-CoA, an observation that is consistent with the concept of alternating-sites cooperativity. Thiophosphoryl group release did not appear to be accompanied by "other-site" phosphorylation, in contrast to ATP stimulation of thiophosphoryl group release in the presence of succinate and CoA (Wolodko et al., see above). In addition, ADP did not appear to be required in the latter reaction.  相似文献   

19.
The ADP(Mg2+)-deactivated, azide-trapped F0 x F1-ATPase of coupled submitochondrial particles is capable of ATP synthesis being incapable of ATP hydrolysis and ATP-dependent delta muH+ generation [FEBS Lett. (1995) 366, 29-32]. This puzzling phenomenon was studied further. No ATPase activity of the submitochondrial particles catalyzing succinate-supported oxidative phosphorylation in the presence of azide was observed when ATP was added to the assay mixture after an uncoupler. Rapid ATP hydrolysis was detected in the same system when ATP followed by an uncoupler was added. Less than 5% of the original ATPase activity was seen when the reaction (assayed with ATP-regenerating system) was initiated by the addition of ATP to the azide-trapped coupled particles oxidizing succinate either in the presence or in the absence of the uncoupler. High ATP hydrolytic activity was revealed when the reaction was started by the simultaneous addition of the ATP plus uncoupler to the particles generating delta muH+. The energy-dependent conversion of the enzyme into latent uncoupler-activated ATPase was prevented by free ADP (Ki approximately 20 microM) and was greatly enhanced after multiple turnovers in oxidative phosphorylation. The results suggest that the catalytic properties of F0 x F1 are delta muH+-dependent which is in accord with our hypothesis on different conformational states of the enzyme participating in ATP synthesis or hydrolysis.  相似文献   

20.
1. In the light a transmembrane electrical potential of 100 mV has been estimated to occur in chromatophores from Rhodospirillum rubrum. The potential was determined by measuring the steady-state distribution of the permeant SCN- across the chromatophore membrane using a flow dialysis technique. The potential was not observed in the dark, nor in the presence of antimycin. It was dissipated on the addition of carbonyl cyanide p-trifluoromethoxyphenylhydrazone. The potential was reduced by between 15 and 20 mV when ADP and Pi were added. Hydrolysis of ATP by the chromatophores generated a membrane potential of about 80 mV. 2. Using a flow dialysis technique light-dependent uptake of methylamine was observed only in the presence of concentrations of SCN- that were 500-fold higher than were used to measure the membrane potential. It is concluded that the pH gradient across the illuminated chromatophore membrane is insignificant except in the presence of relatively high concentrations of a permeant anion like thiocyanate. Further evidence that a negligible pH gradient was generated by the chromatophores is that addition of K+ and nigericin to illuminated chromatophores did not stimulate uptake of SCN-. 3. In the light of chromatophores established and maintained a phosphorylation potential of up to 14 kcal/mol. If a phosphorylation potential of this magnitude is to be poised against a proton-motive force that comprises solely a membrane potential of approx. 100 mV, then at least five protons must be translocated for each ATP synthesised via a chemiosmotic mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号