共查询到20条相似文献,搜索用时 15 毫秒
1.
Hormonal modulation of hepatic plasma membrane lactate transport was studied in primary cultures of isolated hepatocytes from fed rats to examine the mechanism for the known enhancement of lactate transport in starvation and diabetes. Total cellular lactate entry was increased by 14% in the presence of dexamethasone; this was accounted for by an approximately 40% increase in the carrier-mediated component of entry with no effect on diffusion. A trend of similar magnitude was evident with glucagon. The effects of dexamethasone and glucagon on lactate transport constitute an additional potential mechanism for enhancement of gluconeogenesis by these hormones. 相似文献
2.
3.
Colchicine, both in vitro and in vivo, inhibits secretion of albumin and other plasma proteins. In vitro, secretion by rat liver slices is inhibited at 10-minus 6 M with maximal effect at 10-minus 5 M. Inhibition of secretion is accompanied by a concomitant retention of nonsecreted proteins within the slices. Colchicine does not inhibit protein synthesis at these concentrations. Vinblastine also inhibits plasma protein secretion but lumicolchicine, griseofulvin, and cytochalasin B do not. Colchicine also acts in vivo at 10-25 mumol/100 g body weight. Inhibition of secretion is not due to changes in the intracellular nucleotide phosphate levels. Colchicine, administered intravenously, acts within 2 min and its inhibitory effect lasts for at least 3 h. Colchicine has no effect on transport of secretory proteins in the rough or smooth endoplasmic reticulum but it causes these proteins to accumulate in Golgi-derived secretory vesicles. 相似文献
4.
Uptake of copper by mouse hepatocytes 总被引:2,自引:0,他引:2
This study has investigated the uptake of copper by mouse hepatocytes. The cells gave similar results whether they were used right after isolation or maintained overnight on collagen-coated dishes. Uptake from cells in suspension followed two phases: an initial rapid binding followed by a linear uptake phase. The two phases were not so easily distinguishable in cells grown in culture where uptake was linear over the first hour. The uptake showed saturation but may not have followed simple kinetics. Histidine stimulated uptake in a concentration-dependent manner, as did some other amino acids, but copper had very little effect on histidine uptake. The process was not dependent on intracellular adenosine triphosphate (ATP), since inhibitors that substantially reduced ATP levels inside the cell did not alter copper uptake. The inhibitors, however, blocked histidine uptake to varying degrees, suggesting that copper and histidine are taken up by different pathways. The uptake was reduced markedly by N-ethyl maleimide, and preincubation of the cells with "Pronase" resulted in a decrease of uptake. A model for the uptake of copper by hepatocytes that incorporates the data presented in this paper with that produced by earlier workers is suggested. 相似文献
5.
The mechanism of proton translocation by P-type proton ATPases is poorly defined. Asp684 in transmembrane segment M6 of the Arabidopsis thaliana AHA2 plasma membrane P-type proton pump is suggested to act as an essential proton acceptor during proton translocation. Arg655 in transmembrane segment M5 seems to be involved in this proton translocation too, but in contrast to Asp684, is not essential for transport. Asp684 may participate in defining the E1 proton-binding site, which could possibly exist as a hydronium ion coordination center. A model of proton translocation of AHA2 involving the side chains of amino acids Asp684 and Arg655 is discussed. 相似文献
6.
Hepatic metabolism can be investigated using metabolic flux analysis (MFA), which provides a comprehensive overview of the intracellular metabolic flux distribution. The characterization of intermediary metabolism in hepatocytes is important for all biotechnological applications involving liver cells, including the development of bioartificial liver (BAL) devices. During BAL operation, hepatocytes are exposed to plasma or blood from the patient, at which time they are prone to accumulate intracellular lipids and exhibit poor liver-specific functions. In a prior study, we found that preconditioning the primary rat hepatocytes in culture medium containing physiological levels of insulin, as opposed to the typical supraphysiological levels found in standard hepatocyte culture media, reduced lipid accumulation during subsequent plasma exposure. Furthermore, supplementing the plasma with amino acids restored hepatospecific functions. In the current study, we used MFA to quantify the changes in intracellular pathway fluxes of primary rat hepatocytes in response to low-insulin preconditioning and amino acid supplementation. We found that culturing hepatocytes in medium containing lower physiological levels of insulin decreased the clearance of glucose and glycerol with a concomitant decrease in glycolysis. These findings are consistent with the general notion that low insulin, especially in the presence of high glucagon levels, downregulates glycolysis in favor of gluconeogenesis in hepatocytes. The MFA model shows that, during subsequent plasma exposure, low-insulin preconditioning upregulated gluconeogenesis, with lactate as the primary precursor in unsupplemented plasma, with a greater contribution from deaminated amino acids in amino acid-supplemented plasma. Concomitantly, low-insulin preconditioning increased fatty acid oxidation, an effect that was further enhanced by amino acid supplementation to the plasma. The increase in fatty acid oxidation reduced intracellular triglyceride accumulation. Overall, these findings are consistent with the notion that the insulin level in medium culture presets the metabolic machinery of hepatocytes such that it directly impacts on their metabolic behavior during subsequent plasma culture. 相似文献
7.
Roberts EA 《Metallomics : integrated biometal science》2012,4(7):633-640
Proteomics is a systems biology approach for examining proteins and their function in a given specified system. Metalloproteomics narrows the focus of proteomics to those proteins which bind a metal or are metalloproteins. An important system where metalloproteomics can be applied is the hepatocyte, the liver's parenchymal cell engaged in protein synthesis, nutrient deployment, and drug biotransformation. Hepatocellular metalloproteomics is an exciting new scientific discipline which has already advanced our understanding of certain genetic and neoplastic liver disorders. It has the potential to elucidate the action of numerous metals in hepatocytes and generate new diagnostic parameters, namely, novel biomarkers. 相似文献
8.
The present report shows that System A-mediated 2-aminoisobutyric acid (AIB) uptake is elevated in hepatocytes isolated from adrenalectomized rats when they are compared to control cells. Although System ASC activity also shows this perturbation, Systems N, beta, L1, and L2 are unaffected. Transport of AIB in both cell types is stimulated by dexamethasone, insulin, and glucagon, yet the hepatocytes from the adrenalectomized rats are much less responsive to these hormones. This apparent decrease in competence is seen for adaptive regulation of System A as well. The in vitro addition of dexamethasone to the hepatocytes from the adrenalectomized animals does not restore fully their ability to respond to hormones or amino acid deprivation. These effects are observed even after the cells have been held in primary culture for 24 hr. The simultaneous addition of glucagon and dexamethasone to either cell type resulted in stimulation of transport to rates significantly greater than the sum of the increases produced by the two hormones when added separately. In contrast, insulin and dexamethasone were additive in their effects rather than synergistic. These results suggest that hepatocytes from adrenalectomized rats are less competent than control cells with respect to regulation of neutral amino acid transport, including stimulation by insulin or amino acid starvation, two processes which appear not to depend on glucocorticoid for maximal response. 相似文献
9.
Calcium transport in isolated rat hepatocytes 总被引:6,自引:0,他引:6
10.
C García-Ruiz J C Fernández-Checa N Kaplowitz 《The Journal of biological chemistry》1992,267(31):22256-22264
We determined the trans effects of extracellular reduced glutathione (GSH) on the rate of efflux of endogenous labeled GSH from freshly isolated rat hepatocytes. The presence of GSH (10 mM) in the medium significantly stimulated the fractional rate of efflux of [35S]GSH from 5.2 to 12.6%/15 min (p < 0.01). This effect was concentration-dependent, had sigmoid type of kinetics (D50 of 0.32 mM), and was reversible upon removal of external GSH. trans-Stimulation (counter-transport) was also observed with 5 mM oxidized glutathione (GSSG) and ophthalmic acid (fractional [35S] GSH efflux: 13.4% +/- 4.1 and 8.8% +/- 2.3 in 15 min, respectively, compared with control: 4.7 +/- 2.5/15 min). Bromosulphthalein-glutathione (BSP-GSH, 5 mM) in Krebs buffer inhibited the fractional [35S]GSH efflux (1.1%/15 min), whereas in Cl(-)-free buffer, GSH efflux was stimulated (14.2%/15 min) compared with control. trans-Stimulation was independent of chloride. BSP-GSH cis-inhibited and trans-stimulated the initial rate of GSH transport in basolateral-enriched membrane vesicles (bLPM) but not in canalicular-enriched membrane vesicles (cLPM). gamma-Glutamyl compounds also cis-inhibited and trans-stimulated GSH transport in bLPM vesicles. GSH-depleted hepatocytes incubated with 10 mM [35S]GSH accumulated more GSH than repleted cells, but the initial rate of uptake of radioactivity was faster in repleted cells. In contrast, repleted hepatocytes incubated with tracer or 50 microM [35S]GSH did not take up GSH. Thus, the sinusoidal membrane GSH transporter exhibits low affinity kinetics with sigmoid features for both GSH uptake and trans-stimulation of efflux, explaining the lack of uptake of GSH at low physiologic extracellular concentrations. Therefore, our findings support and explain the widely held view that GSH transport is unidirectional under physiologic conditions. However, the efflux of GSH may also occur in exchange for the uptake of organic anions and gamma-glutamyl compounds. 相似文献
11.
Plasma membranes from liver parenchymal cells were isolated by rate-isopycnic zonal centrifugation. A method is described for the Beckman size 15 zonal rotor. It involved preparation from a perfused liver of a parenchymal cell-enriched homogenate in isoosmotic sucrose. The nuclear fraction containing membranes was recovered by centrifugation. The resuspended pellet was applied on the gradient of the zonal rotor. The isolated membranes had the same isopycnic banding density as 37% sucrose (w/w). The specific activity of 5′-nucleotidase, a widely used plasma membrane marker, was 105 μmoles·(mg protein)?1·h?1 being enriched by a factor of 50 as compared with parenchymal cell homogenate. The plasma membrane fraction was free of the mitochondrial and lysosomal enzymes, succinate dehydrogenase and acid phosphatase. No DNA and 10 μg RNA per mg plasma membrane protein were found. The purity of the membranes and their morphological appearance were controlled by electron microscopy. The preparation consisting of large membrane sheets showed a considerable purification away from other cellular components. A comparison with similar methods indicates that plasma membranes of a higher degree of purity can be obtained from parenchymal cells. 相似文献
12.
Intracellular transport of cholesterol to the plasma membrane 总被引:10,自引:0,他引:10
We have modified a plasma membrane isolation procedure which utilizes DEAE-Sephadex beads (Gotlib, L. J., and Searls, D. B. (1980) Biochim. Biophys. Acta 602, 207-212) to rapidly measure intracellular transport of cholesterol from the site of synthesis in the endoplasmic reticulum to the plasma membrane. This transport process is rapid, with a half-time of about 10 min, has different kinetics from that of intracellular glycoprotein transport, and appears to be energy-dependent. 相似文献
13.
We have used pulse-chase labeling of Chinese hamster ovary cells with choline followed by plasma membrane isolation on cationic beads to study the transport of phosphatidylcholine from the endoplasmic reticulum to the plasma membrane. We have found that the process is rapid (t1/2 [25 degrees C] = 2 min) and not affected by energy poisons or by cytochalasin B, colchicine, monensin, or carbonyl cyanide p-chlorophenylhydrazone. Cooling cells to 0 degree C effectively stops the transport process. The intracellular transport of phosphatidylcholine is distinct in several ways from the intracellular transport of cholesterol (Kaplan, M. R., and R. D. Simoni, 1985, J. Cell. Biol., 101:446-453). 相似文献
14.
Oleate stimulates glucose production and concomitantly decreases lactate and pyruvate production by rat hepatocyte suspensions incubated with dihydroxyacetone as substrate. The actions of oleate could be blocked by D-(+)dodecanoylcarnitine, which inhibits transport of the fatty acid into the mitochondria and the subsequent oxidation. beta-Hydroxybutyrate, but not acetoacetate, also stimulated glucose synthesis and inhibited lactate and pyruvate production. Furthermore, both beta-hydroxybutyrate and oleate stimulated oxygen consumption to the same extent. This suggests that oleate stimulates glucose production by the provision of energy subsequent to mitochondrial beta-oxidation of the fatty acids. The content of ATP itself did not appear to be responsible for the effects of oleate. Crossover analysis of the gluconeogenic intermediates implicated a site of oleate action between fructose 1,6-bisphosphate and fructose 6-phosphate, suggesting phosphofructokinase and/or fructose-bisphosphatase as possible regulatory sites. Coupled with the finding that intracellular citrate accumulates upon addition of oleate or beta-hydroxybutyrate, but not acetoacetate, the results suggest that citrate inhibition of phosphofructokinase accounts for the redirection of carbon flow from lactate and pyruvate formation and towards that of glucose. 相似文献
15.
Ligand-regulated transport of the Menkes copper P-type ATPase efflux pump from the Golgi apparatus to the plasma membrane: a novel mechanism of regulated trafficking. 总被引:30,自引:1,他引:30 下载免费PDF全文
M J Petris J F Mercer J G Culvenor P Lockhart P A Gleeson J Camakaris 《The EMBO journal》1996,15(22):6084-6095
The Menkes P-type ATPase (MNK), encoded by the Menkes gene (MNK; ATP7A), is a transmembrane copper-translocating pump which is defective in the human disorder of copper metabolism, Menkes disease. Recent evidence that the MNK P-type ATPase has a role in copper efflux has come from studies using copper-resistant variants of cultured Chinese hamster ovary (CHO) cells. These variants have MNK gene amplification and consequently overexpress MNK, the extents of which correlate with the degree of elevated copper efflux. Here, we report on the localization of MNK in these copper-resistant CHO cells when cultured in different levels of copper. Immunofluorescence studies demonstrated that MNK is predominantly localized to the Golgi apparatus of cells in basal medium. In elevated copper conditions there was a rapid trafficking of MNK from the Golgi to the plasma membrane. This shift in steady-state distribution of MNK was reversible and not dependent on new protein synthesis. In media containing basal copper, MNK accumulated in cytoplasmic vesicles after treatment of cells with a variety of agents that inhibit endosomal recycling. We suggest that MNK continuously recycles between the Golgi and the plasma membrane and elevated copper shifts the steady-state distribution from the Golgi to the plasma membrane. These data reveal a novel system of regulated protein trafficking which ultimately leads to the efflux of an essential yet potentially toxic ligand, where the ligand itself appears directly and specifically to stimulate the trafficking of its own transporter. 相似文献
16.
The entry of glycerol into isolated rat hepatocytes appears to be catalyzed by a specific carrier. At a physiological concentration of 0.1 mM, glycerol utilization is rate limited by the permeation step. Intracellular glycerol is trapped by an excess of glycerol kinase, which has a higher apparent affinity for the substrate than that of the membrane carrier. The entry of glycerol into the hepatocytes is highly sensitive to inhibition by monoacetin and cytochalasin B, but not by DL-1,2-propanediol, erythritol, D-glucose, D-galactose, D-mannose, or D-fructose. 相似文献
17.
Amino acid transport in isolated rat hepatocytes 总被引:13,自引:0,他引:13
Michael S. Kilberg 《The Journal of membrane biology》1982,69(1):1-12
Summary Improvements in the collagenase perfusion techniques have made isolated rat hepatocytes a popular model in which to study hepatic function. Our knowledge of hepatic amino acid transport has been advanced as a result of this methodology. Translocation across the hepatocyte plasma membrane can, in some instances, represent the rate-limiting step in the overall metabolism of certain amino acids. Furthermore, regulation of amino acid uptake by hepatocytes appears to play a role in diabetes, and perhaps in malignant transformation. Comparisons between normal adult hepatocytes and several hepatoma cell lines show basic differences in amino acids transport. There are at least eight distinct systems in normal hepatocytes for transport of the amino acids. One of these, System A, transports the small neutral amino acids most efficiently and responds to a wide variety of hormones. Systems A and N exhibit enhanced uptake rates after the cells have been maintained in the absence of extracellular amino acids, a phenomenon termed adaptive control. Further studies using isolated hepatocytes will increase our basic understanding of membrane transport processes and their regulation. 相似文献
18.
In this study, we demonstrate that, in rat liver, epidermal growth factor (EGF) is responsible for the partial redistribution of caveolin-1 from the plasma membrane into the early/sorting endocytic compartment. Highly purified endosomes and plasma membrane fractions were isolated from control rat liver and from rats injected with EGF or pIgA for different times. Whereas in subcellular fractions from control hepatocytes most of caveolin was concentrated in the plasma membrane and the receptor-recycling fractions, after EGF injection there was a significant redistribution of caveolin toward the early/sorting (CURL) endocytic fractions. The recruitment of caveolin into the endocytic compartment was not induced by pIgA. 相似文献
19.
20.
The uptake of dimethialium, a thiamine analog having a methyl group in place of the hydroxyethyl group in the thiazole moiety, was studied in freshly isolated rat hepatocytes. In an Na+-medium, dimethialium at 10 microM was accumulated rapidly by the cells and an almost steady intra- to extracellular distribution ratio of 4.2 was attained in 5 min of incubation. The Kt and the Vmax for the saturable component were estimated to be 27 microM and 19 pmol/10(5) cells per min, respectively. In a K+ medium, the uptake of dimethialium was decreased to 58% of that of control. Ouabain and 2,4-dinitrophenol significantly lowered the rate of dimethialium uptake. Both phenylthiazinothiamine and oxythiamine were inhibitory on the uptake of dimethialium, which uptake was also inhibited by choline. These data indicate that dimethialium transport in liver cells proceeds via a carrier-mediated active process dependent on Na+ and biological energy. Furthermore, these results also suggest that thiamine transport in liver is dissociable from thiamine phosphorylation. 相似文献