首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Greer PL  Greenberg ME 《Neuron》2008,59(6):846-860
One of the unique characteristics of higher organisms is their ability to learn and adapt to changes in their environment. This plasticity is largely a result of the brain's ability to convert transient stimuli into long-lasting alterations in neuronal structure and function. This process is complex and involves changes in receptor trafficking, local mRNA translation, protein turnover, and new gene synthesis. Here, we review how neuronal activity triggers calcium-dependent gene expression to regulate synapse development, maturation, and refinement. Interestingly, many components of the activity-dependent gene expression program are mutated in human cognitive disorders, which suggest that this program is essential for proper brain development and function.  相似文献   

2.
Alzheimer's disease and other neurodegenerative disorders of aging are characterized by clinical and pathological features that are relatively specific to humans. To obtain greater insight into how brain aging has evolved, we compared age-related gene expression changes in the cortex of humans, rhesus macaques, and mice on a genome-wide scale. A small subset of gene expression changes are conserved in all three species, including robust age-dependent upregulation of the neuroprotective gene apolipoprotein D (APOD) and downregulation of the synaptic cAMP signaling gene calcium/calmodulin-dependent protein kinase IV (CAMK4). However, analysis of gene ontology and cell type localization shows that humans and rhesus macaques have diverged from mice due to a dramatic increase in age-dependent repression of neuronal genes. Many of these age-regulated neuronal genes are associated with synaptic function. Notably, genes associated with GABA-ergic inhibitory function are robustly age-downregulated in humans but not in mice at the level of both mRNA and protein. Gene downregulation was not associated with overall neuronal or synaptic loss. Thus, repression of neuronal gene expression is a prominent and recently evolved feature of brain aging in humans and rhesus macaques that may alter neural networks and contribute to age-related cognitive changes.  相似文献   

3.
4.
The development of the central nervous system (CNS) relies on precisely orchestrated gene expression regulation. Dysregulation of both genetic and environmental factors can affect proper CNS development and results in neurological diseases. Recent studies have shown that similar to protein coding genes, noncoding RNA molecules have a significant impact on normal CNS development and on causes and progression of human neurological disorders. In this review, we have highlighted discoveries of functions of noncoding RNAs, in particular microRNAs and long noncoding RNAs, in neural development and neurological diseases. Emerging evidence has shown that microRNAs play an essential role in many aspects of neural development, such as proliferation of neural stem cells and progenitors, neuronal differentiation, maturation, and synaptogenesis. Misregulation of microRNAs is associated with some mental disorders and neurodegeneration diseases. In addition, long noncoding RNAs are found to play a role in neural development by regulating the expression of protein coding genes. Therefore, examining noncoding RNA-mediated gene regulations has revealed novel mechanisms of neural development and provided new insights into the etiology of human neurological diseases.  相似文献   

5.
Translational control of gene expression is emerging as a cardinal step in the regulation of protein abundance. Especially for embryonic (ESC) and neuronal stem cells (NSC), regulation of mRNA translation is involved in the maintenance of pluripotency but also differentiation. For neuronal stem cells this regulation is linked to the various neuronal subtypes that arise in the developing brain and is linked to numerous brain disorders. Herein, we review translational control mechanisms in ESCs and NSCs during development and differentiation, and briefly discuss their link to brain disorders.  相似文献   

6.
Seizure disorders affect a significant percentage of the population, and researchers worldwide continue to work toward a better understanding of what initiates, propagates, and results from aberrant and excessive neuronal excitation. During the past two decades, one aspect of this research effort has been to describe the effects of seizure activity upon neuronal gene expression, with hopes of identifying the molecular mechanisms that underlie subsequent changes in cell function and survival. Here we review this body of work from the perspective of how these gene profiling efforts have evolved, starting with one-by-one analyses of specific gene targets to the more recent use of DNA microarrays to survey literally thousands of genes simultaneously. With regard to the latter, we present some of our own work that suggests that molecular mechanisms contributing to normal brain development are reiterated during seizure-induced network reorganization.  相似文献   

7.
8.
Lentiviral-mediated gene transfer in vivo or in cultured mammalian neurons can be used to address a wide variety of biological questions, to design animals models for specific neurodegenerative pathologies, or to test potential therapeutic approaches in a variety of brain disorders. Lentiviruses can infect non-dividing cells, thereby allowing stable gene transfer in post-mitotic cells such as mature neurons. An important contribution has been the use of inducible vectors: the same animal can thus be used repeatedly in the doxycycline-on or -off state, providing a powerful mean for assessing the function of a gene candidate in a disorder within a specific neuronal circuit. Furthermore, lentivirus vectors provide a unique tool to integrate siRNA expression constructs with the aim to locally knockdown expression of a specific gene, enabling to assess the function of a gene in a very specific neuronal pathway. Lentiviral vector-mediated delivery of short hairpin RNA results in persistent knockdown of gene expression in the brain. Therefore, the use of lentiviruses for stable expression of siRNA in brain is a powerful aid to probe gene functions in vivo and for gene therapy of diseases of the central nervous system. In this chapter I review the applications of lentivirus-mediated gene transfer in the investigation of specific gene candidates involved in major brain disorders and neurodegenerative processes. Major applications have been in polyglutamine disorders, such as synucleinopathies and Parkinson’s disease, or in investigating gene function in Huntington’s disease, dystonia, or muscular dystrophy. Recently, lentivirus gene transfer has been an invaluable tool for evaluation of gene function in behavioral disorders such as drug addiction and attention-deficit hyperactivity disorder or in learning and cognition.  相似文献   

9.
10.
Neurons have highly specialized intracellular compartments that facilitate the development and activity of the nervous system. Ubiquitination is a post-translational modification that controls many aspects of neuronal function by regulating protein abundance. Disruption of this signaling pathway has been demonstrated in neurological disorders such as Parkinson’s disease, Amyotrophic Lateral Sclerosis and Angleman Syndrome. Since many neurological disorders exhibit ubiquitinated protein aggregates, the loss of neuronal ubiquitin homeostasis may be an important contributor of disease. This review discusses the mechanisms utilized by neurons to control the free pool of ubiquitin necessary for normal nervous system development and function as well as new roles of protein ubiquitination in regulating the synaptic activity.  相似文献   

11.
12.
Members of the cAMP-dependent second-messenger pathway have been described as regulators of cellular growth and differentiation and were consequently implicated in a variety of embryogenic processes including brain development. Moreover, recent data suggest an indispensable role for cAMP-dependent protein kinases (PKAs) in neuronal differentiation and synaptic plasticity. Using a degenerate primer-based approach, we have identified a novel murine gene closely related to the human cAMP-dependent protein kinase PRKX on Xp22.3. This gene (Pkare) was mapped to the region near the centromere of the murine X chromosome and is expressed in a variety of adult organs including kidney, liver, spleen, testis, ovary, lung, heart, and brain. Antisense in situ hybridization on staged mouse embryos revealed a highly distinctive expression pattern during neuronal development, with elevated Pkare expression observed only in differentiating neurons within the first ganglion, the dorsal root ganglia, and the mantle layer of the telencephalon. Based on the close relationship with the catalytic PKA subunits and its distinct expression in differentiating neuronal cells, Pkare might represent a novel component of the cAMP-regulated pathways involved in brain development and function.  相似文献   

13.
《Epigenetics》2013,8(2):126-134
Neural developmental disorders, such as autism, Rett Syndrome, Fragile X syndrome, and Angelman syndrome manifest during early postnatal neural development. Although the genes responsible for some of these disorders have been identified, how the mutations of these genes affect neural development is currently unclear. Emerging evidence suggest that these disorders share common underlying defects in neuronal morphology, synaptic connectivity and brain plasticity. In particular, alterations in dendritic branching and spine morphology play a central role in the pathophysiology of most mental retardation disorders, suggesting that common pathways regulating neuronal function may be affected. Epigenetic modulations, mediated by DNA methylation, RNA-associated silencing, and histone modification, can serve as an intermediate process that imprints dynamic environmental experiences on the “fixed” genome, resulting in stable alterations in phenotypes. Disturbance in epigenetic regulations can lead to inappropriate expression or silencing of genes, causing an array of multi-system disorders and neoplasias. Rett syndrome, the most common form of mental retardation in young girls, is due to germline mutation of MECP2, encoding a methylated DNA binding protein that translates DNA methylation into gene repression. Angelman syndrome is due to faulty genomic imprinting or maternal mutations in UBE3A. Fragile X Syndrome, in most cases, results from the hypermethylation of FMR1 promoter, hence the loss of expression of functional FMRP protein. Autism, with its complex etiology, may have strong epigenetic link. Together, these observations strongly suggest that epigenetic mechanisms may play a critical role in brain development and etiology of related disorders. This report summarizes the scientific discussions and major conclusions from a recent conference that aimed to gain insight into the common molecular pathways affected among these disorders and discover potential therapeutic targets that have been missed by looking at one disorder at a time.  相似文献   

14.
15.
Familial dysautonomia (FD) is a developmental neuropathy of the sensory and autonomous nervous systems. The IKBKAP gene, encoding the IKAP/hELP1 subunit of the RNA polymerase II Elongator complex is mutated in FD patients, leading to a tissue-specific mis-splicing of the gene and to the absence of the protein in neuronal tissues. To elucidate the function of IKAP/hELP1 in the development of neuronal cells, we have downregulated IKBKAP expression in SHSY5Y cells, a neuroblastoma cell line of a neural crest origin. We have previously shown that these cells exhibit abnormal cell adhesion when allowed to differentiate under defined culture conditions on laminin substratum. Here, we report results of a microarray expression analysis of IKAP/hELP1 downregulated cells that were grown on laminin under differentiation or non-differentiation growth conditions. It is shown that under non-differentiation growth conditions, IKAP/hELP1 downregulation affects genes important for early developmental stages of the nervous system, including cell signaling, cell adhesion and neural crest migration. IKAP/hELP1 downregulation during differentiation affects the expression of genes that play a role in late neuronal development, in axonal projection and synapse formation and function. We also show that IKAP/hELP1 deficiency affects the expression of genes involved in calcium metabolism before and after differentiation of the neuroblastoma cells. Hence, our data support IKAP/hELP1 importance in the development and function of neuronal cells and contribute to the understanding of the FD phenotype.  相似文献   

16.
17.
Transmissible Spongiform Encephal-opathies (TSE) or prion diseases are a threat to food safety and to human and animal health. The molecular mechanisms responsible for prion diseases share similarities with a wider group of neurodegenerative disorders including Alzheimer disease and Parkinson disease and the central pathological event is a disturbance of protein folding of a normal cellular protein that is eventually accompanied by neuronal cell death and the death of the host. Prion protein (PrP) is a constituent of most normal mammalian cells and its presence is essential in the pathogenesis of TSE. However, the function of this normal cellular protein remains unclear. The prevention of PRNP gene expression in mammalian species has been undramatic, implying a functional redundancy. Yet PrP is conserved from mammals to fish. Recent studies of PrP in zebrafish have yielded novel findings showing that PrP has essential roles in early embryonic development. The amenability of zebrafish to global technologies has generated data indicating the existence of “anchorless” splice variants of PrP in the early embryo. This paper will discuss the possibility that the experimentalist''s view of PrP functions might be clearer at a greater phylogenetic distance.Key words: prion protein, zebrafish, gene expression, embryo development, neurogenesis  相似文献   

18.
Alternative pre-mRNA splicing, which produces various mRNA isoforms with distinct structures and functions from a single gene, is regulated by specific RNA-binding proteins and is an essential method for regulating gene expression in mammals. Recent studies have shown that abnormal change during neuronal development triggered by splicing mis-regulation is an important feature of various neurological diseases. Polypyrimidine tract binding protein 1 (PTBP1) is a kind of RNA-binding proteins with extensive biological functions. As a well-known splicing regulator, it affects the neuronal development process through its involvement in axon formation, synaptogenesis, and neuronal apoptosis, according to the most recent studies. Here, we summarized the mechanism of alternative splicing, structure and function of PTBP1, and the latest research progress on the role of alternative splicing events regulated by PTBP1 in axon formation, synaptogenesis and neuronal apoptosis, to reveal the mechanism of PTBP1-regulated changes in neuronal development process.  相似文献   

19.
Regulation of gene expression in the nervous system   总被引:1,自引:0,他引:1  
  相似文献   

20.
We studied the global relationship between gene expression and neuroanatomical connectivity in the adult rodent brain. We utilized a large data set of the rat brain "connectome" from the Brain Architecture Management System (942 brain regions and over 5000 connections) and used statistical approaches to relate the data to the gene expression signatures of 17,530 genes in 142 anatomical regions from the Allen Brain Atlas. Our analysis shows that adult gene expression signatures have a statistically significant relationship to connectivity. In particular, brain regions that have similar expression profiles tend to have similar connectivity profiles, and this effect is not entirely attributable to spatial correlations. In addition, brain regions which are connected have more similar expression patterns. Using a simple optimization approach, we identified a set of genes most correlated with neuroanatomical connectivity, and find that this set is enriched for genes involved in neuronal development and axon guidance. A number of the genes have been implicated in neurodevelopmental disorders such as autistic spectrum disorder. Our results have the potential to shed light on the role of gene expression patterns in influencing neuronal activity and connectivity, with potential applications to our understanding of brain disorders. Supplementary data are available at http://www.chibi.ubc.ca/ABAMS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号