首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plants use pattern recognition receptors (PRRs) to perceive pathogen-associated molecular pattern (PAMPs) and initiate defence responses. PAMP-triggered immunity (PTI) plays an important role in general resistance, and constrains the growth of most microbes on plants. Despite the importance of PRRs in plant immunity, the vast majority of them remain to be identified. We recently showed that the Arabidopsis LysM receptor kinase CERK1 is required not only for chitin signalling and fungal resistance, but plays an essential role in restricting bacterial growth on plants. We proposed that CERK1 may mediate the perception of a bacterial PAMP, or an endogenous plant cell wall component released during infection, through its extracellular carbohydrate-binding LysM-motifs. Here we report reduced activation of a PAMP-induced defence response on plants lacking the CERK1 gene after treatment with crude bacterial extracts. This demonstrates that CERK1 mediates perception of an unknown bacterial PAMP in Arabidopsis.Key words: PAMP, PRR, PTI, LysM, chitin, bacteria, carbohydrate  相似文献   

2.
For many cancers, the lack of potency and the toxicity of current drugs limits the dose achievable in patients and the efficacy of treatment. Among them, retinoblastoma is a rare cancer of the eye for which better chemotherapeutic options are needed. Combination therapy is a compelling approach to enhance the efficacy of current treatment, however clinical trials to test rationally designed combinations of approved drugs are slow and expensive, and limited by our lack of in-depth knowledge of drug specificity. Since many patients already turn to nutraceuticals in hopes of improving their condition, we hypothesized that certain approved drugs could potentially synergize with widely consumed supplements. Following this hypothesis, we devised an alternative screening strategy aimed at taking advantage of a bait compound such as a nutraceutical with potential therapeutic benefits but low potency, by screening chemical libraries for approved drugs that synergize with this companion effector. As a proof of concept, we sought to identify approved drugs with synergetic therapeutic effects toward retinoblastoma cells in combination with the antioxidant resveratrol, popular as a supplement. We systematically tested FDA-approved drugs and known bioactives seeking to identify such pairs, which led to uncovering only a few additive combinations; but to our surprise, we identified a class of anticancer drugs widely used in the clinic whose therapeutic effect is antagonized with resveratrol. Our observations could explain in part why some patients do not respond well to treatment. Our results validate this alternative approach, and we expect that our companion effector strategy could significantly impact both drug discovery and the nutraceutical industry.  相似文献   

3.
There have been renewed interests in natural products as drug discovery sources. In particular, natural product combinations have been extensively studied, clinically tested, and widely used in traditional, folk and alternative medicines. But opinions about their therapeutic efficacies vary from placebo to synergistic effects. The important questions are whether synergistic effects can sufficiently elevate therapeutic potencies to drug levels, and by what mechanisms and at what odds such combinations can be assembled. We studied these questions by analyzing literature-reported cell-based potencies of 190 approved anticancer and antimicrobial drugs, 1378 anticancer and antimicrobial natural products, 99 natural product extracts, 124 synergistic natural product combinations, and 122 molecular interaction profiles of the 19 natural product combinations with collective potency enhanced to drug level or by >10-fold. Most of the evaluated natural products and combinations are sub-potent to drugs. Sub-potent natural products can be assembled into combinations of drug level potency at low probabilities by distinguished multi-target modes modulating primary targets, their regulators and effectors, and intracellular bioavailability of the active natural products.  相似文献   

4.
Combinatorial therapy is a promising strategy for combating complex disorders due to improved efficacy and reduced side effects. However, screening new drug combinations exhaustively is impractical considering all possible combinations between drugs. Here, we present a novel computational approach to predict drug combinations by integrating molecular and pharmacological data. Specifically, drugs are represented by a set of their properties, such as their targets or indications. By integrating several of these features, we show that feature patterns enriched in approved drug combinations are not only predictive for new drug combinations but also provide insights into mechanisms underlying combinatorial therapy. Further analysis confirmed that among our top ranked predictions of effective combinations, 69% are supported by literature, while the others represent novel potential drug combinations. We believe that our proposed approach can help to limit the search space of drug combinations and provide a new way to effectively utilize existing drugs for new purposes.  相似文献   

5.
Although genome-wide association studies have identified many risk loci associated with colorectal cancer, the molecular basis of these associations are still unclear. We aimed to infer biological insights and highlight candidate genes of interest within GWAS risk loci. We used an in silico pipeline based on functional annotation, quantitative trait loci mapping of cis-acting gene, PubMed text-mining, protein-protein interaction studies, genetic overlaps with cancer somatic mutations and knockout mouse phenotypes, and functional enrichment analysis to prioritize the candidate genes at the colorectal cancer risk loci. Based on these analyses, we observed that these genes were the targets of approved therapies for colorectal cancer, and suggested that drugs approved for other indications may be repurposed for the treatment of colorectal cancer. This study highlights the use of publicly available data as a cost effective solution to derive biological insights, and provides an empirical evidence that the molecular basis of colorectal cancer can provide important leads for the discovery of new drugs.  相似文献   

6.

Background

The rapid development of effective medical countermeasures against potential biological threat agents is vital. Repurposing existing drugs that may have unanticipated activities as potential countermeasures is one way to meet this important goal, since currently approved drugs already have well-established safety and pharmacokinetic profiles in patients, as well as manufacturing and distribution networks. Therefore, approved drugs could rapidly be made available for a new indication in an emergency.

Methodology/Principal Findings

A large systematic effort to determine whether existing drugs can be used against high containment bacterial and viral pathogens is described. We assembled and screened 1012 FDA-approved drugs for off-label broad-spectrum efficacy against Bacillus anthracis; Francisella tularensis; Coxiella burnetii; and Ebola, Marburg, and Lassa fever viruses using in vitro cell culture assays. We found a variety of hits against two or more of these biological threat pathogens, which were validated in secondary assays. As expected, antibiotic compounds were highly active against bacterial agents, but we did not identify any non-antibiotic compounds with broad-spectrum antibacterial activity. Lomefloxacin and erythromycin were found to be the most potent compounds in vivo protecting mice against Bacillus anthracis challenge. While multiple virus-specific inhibitors were identified, the most noteworthy antiviral compound identified was chloroquine, which disrupted entry and replication of two or more viruses in vitro and protected mice against Ebola virus challenge in vivo.

Conclusions/Significance

The feasibility of repurposing existing drugs to face novel threats is demonstrated and this represents the first effort to apply this approach to high containment bacteria and viruses.  相似文献   

7.
Several chemotherapeutics exert immunomodulatory effects. One of these is the nucleoside analogue gemcitabine, which is widely used in patients with lung cancer, ovarian cancer, breast cancer, mesothelioma and several other types of cancer, but with limited efficacy. We hypothesized that the immunopotentiating effects of this drug are partly restrained by the inhibitory T cell molecule CTLA-4 and thus could be augmented by combining it with a blocking antibody against CTLA-4, which on its own has recently shown beneficial clinical effects in the treatment of patients with metastatic melanoma. Here we show, using two non-immunogenic murine tumor models, that treatment with gemcitabine chemotherapy in combination with CTLA-4 blockade results in the induction of a potent anti-tumor immune response. Depletion experiments demonstrated that both CD4+ and CD8+ T cells are required for optimal therapeutic effect. Mice treated with the combination exhibited tumor regression and long-term protective immunity. In addition, we show that the efficacy of the combination is moderated by the timing of administration of the two agents. Our results show that immune checkpoint blockade and cytotoxic chemotherapy can have a synergistic effect in the treatment of cancer. These results provide a basis to pursue combination therapies with anti-CTLA-4 and immunopotentiating chemotherapy and have important implications for future studies in cancer patients. Since both drugs are approved for use in patients our data can be immediately translated into clinical trials.  相似文献   

8.
Viral infection of mammalian cells triggers the innate immune response through non-self recognition of pathogen associated molecular patterns (PAMPs) in viral nucleic acid. Accurate PAMP discrimination is essential to avoid self recognition that can generate autoimmunity, and therefore should be facilitated by the presence of multiple motifs in a PAMP that mark it as non-self. Hepatitis C virus (HCV) RNA is recognized as non-self by RIG-I through the presence of a 5′-triphosphate (5′-ppp) on the viral RNA in association with a 3′ poly-U/UC tract. Here we define the HCV PAMP and the criteria for RIG-I non-self discrimination of HCV by examining the RNA structure-function attributes that impart PAMP function to the poly-U/UC tract. We found that the 34 nucleotide poly-uridine “core” of this sequence tract was essential for RIG-I activation, and that interspersed ribocytosine nucleotides between poly-U sequences in the RNA were required to achieve optimal RIG-I signal induction. 5′-ppp poly-U/UC RNA variants that stimulated strong RIG-I activation efficiently bound purified RIG-I protein in vitro, and RNA interaction with both the repressor domain and helicase domain of RIG-I was required to activate signaling. When appended to 5′-ppp RNA that lacks PAMP activity, the poly-U/UC U-core sequence conferred non-self recognition of the RNA and innate immune signaling by RIG-I. Importantly, HCV poly-U/UC RNA variants that strongly activated RIG-I signaling triggered potent anti-HCV responses in vitro and hepatic innate immune responses in vivo using a mouse model of PAMP signaling. These studies define a multi-motif PAMP signature of non-self recognition by RIG-I that incorporates a 5′-ppp with poly-uridine sequence composition and length. This HCV PAMP motif drives potent RIG-I signaling to induce the innate immune response to infection. Our studies define a basis of non-self discrimination by RIG-I and offer insights into the antiviral therapeutic potential of targeted RIG-I signaling activation.  相似文献   

9.
Primer approximation multiplex PCR (PAMP) is a new experimental protocol for efficiently assaying structural variation in genomes. PAMP is particularly suited to cancer genomes where the precise breakpoints of alterations such as deletions or translocations vary between patients. The design of PCR primer sets for PAMP is challenging because a large number of primer pairs are required to detect alterations in the hundreds of kilobases range that can occur in cancer. These sets of primers must achieve high coverage of the region of interest, while avoiding primer dimers and satisfying the physico-chemical constraints of good PCR primers. We describe a natural formulation of these constraints as a combinatorial optimization problem. We show that the PAMP primer design problem is NP-hard, and design algorithms based on simulated annealing and integer programming, that provide good solutions to this problem in practice. The algorithms are applied to a test region around the known CDKN2A deletion, which show excellent results even in a 1:49 mixture of mutated:wild-type cells. We use these test results to help set design parameters for larger problems. We can achieve near-optimal designs for regions close to 1 Mb.  相似文献   

10.
Combinatorial therapies are required to treat patients with advanced cancers that have become resistant to monotherapies through rewiring of redundant pathways. Due to a massive number of potential drug combinations, there is a need for systematic approaches to identify safe and effective combinations for each patient, using cost-effective methods. Here, we developed an exact multiobjective optimization method for identifying pairwise or higher-order combinations that show maximal cancer-selectivity. The prioritization of patient-specific combinations is based on Pareto-optimization in the search space spanned by the therapeutic and nonselective effects of combinations. We demonstrate the performance of the method in the context of BRAF-V600E melanoma treatment, where the optimal solutions predicted a number of co-inhibition partners for vemurafenib, a selective BRAF-V600E inhibitor, approved for advanced melanoma. We experimentally validated many of the predictions in BRAF-V600E melanoma cell line, and the results suggest that one can improve selective inhibition of BRAF-V600E melanoma cells by combinatorial targeting of MAPK/ERK and other compensatory pathways using pairwise and third-order drug combinations. Our mechanism-agnostic optimization method is widely applicable to various cancer types, and it takes as input only measurements of a subset of pairwise drug combinations, without requiring target information or genomic profiles. Such data-driven approaches may become useful for functional precision oncology applications that go beyond the cancer genetic dependency paradigm to optimize cancer-selective combinatorial treatments.  相似文献   

11.
《Endocrine practice》2023,29(3):221-227
A better understanding of the molecular aberrations prevalent in thyroid cancers had led to significant advances in the management of advanced thyroid cancer. The landscape of thyroid cancer treatment has grown rapidly. Molecular profiling is the key to identify actionable targets for treatment of advanced disease. In the past decade, there have been regulatory approvals of 9 kinase inhibitors or kinase inhibitor combinations. There are now drugs approved for all of the different types of thyroid cancers, including anaplastic thyroid cancer. However, these drugs are not curative and therefore new strategies and treatments continue to be sought.  相似文献   

12.
Several 'pathogen-associated molecular pattern' (PAMP) of the opportunistic pathogen Pseudomonas aeruginosa activate the innate immune system in epithelial cells. Particularly the production of antimicrobial peptides such as the human beta-defensin-2 (hBD-2) and proinflammatory cytokines as the interleukin (IL)-8 is boosted. In the present study culture supernatants of static grown P. aeruginosa were found to be potent hBD-2 and IL-8 inducers, indicating a soluble or shedded PAMP, comparable to that of heat-killed bacterial supernatants. In subsequent analyses this PAMP was identified as flagellin, the major structural protein of the flagella. Flagellin is known to be an immunostimulatory potent factor, but the mechanisms by which P. aeruginosa is able to remove flagellin from the flagella remain unknown. Here we provide evidence for the presence of a factor responsible for release of flagellin from the flagella. Purification of this factor and subsequent mass spectrometry analyses identified rhamnolipids as responsible agents. Our findings indicate that maybe upon adhesion to surfaces P. aeruginosa alters the outer membrane composition in a rhamnolipid-depending manner, thereby shedding flagellin from the flagella. In turn epithelial cells recognize flagellin and cause the synthesis of antimicrobial peptides as well as recruitment of inflammatory cells by induction of proinflammatory cytokines.  相似文献   

13.
Bacterial pathogens causing systemic disease commonly evolve from organisms associated with localized infections but differ from their close relatives in their ability to overcome mucosal barriers by mechanisms that remain incompletely understood. Here we investigated whether acquisition of a regulatory gene, tviA, contributed to the ability of Salmonella enterica serotype Typhi to disseminate from the intestine to systemic sites of infection during typhoid fever. To study the consequences of acquiring a new regulator by horizontal gene transfer, tviA was introduced into the chromosome of S. enterica serotype Typhimurium, a closely related pathogen causing a localized gastrointestinal infection in immunocompetent individuals. TviA repressed expression of flagellin, a pathogen associated molecular pattern (PAMP), when bacteria were grown at osmotic conditions encountered in tissue, but not at higher osmolarity present in the intestinal lumen. TviA-mediated flagellin repression enabled bacteria to evade sentinel functions of human model epithelia and resulted in increased bacterial dissemination to the spleen in a chicken model. Collectively, our data point to PAMP repression as a novel pathogenic mechanism to overcome the mucosal barrier through innate immune evasion.  相似文献   

14.
To detect microbial infection multicellular organisms have evolved sensing systems for pathogen-associated molecular patterns (PAMPs). Here, we identify bacterial cold shock protein (CSP) as a new such PAMP that acts as a highly active elicitor of defense responses in tobacco. Tobacco cells perceive a conserved domain of CSP and synthetic peptides representing 15 amino acids of this domain-induced responses at subnanomolar concentrations. Central to the elicitor-active domain is the RNP-1 motif KGFGFITP, a motif conserved also in many RNA- and DNA-binding proteins of eukaryotes. Csp15-Nsyl, a peptide representing the domain with highest homology to csp15 in a protein of Nicotiana sylvestris exhibited only weak activity in tobacco cells. Crystallographic and genetic data from the literature show that the RNP-1 domain of bacterial CSPs resides on a protruding loop and exposes a series of aromatic and basic side chains to the surface that are essential for the nucleotide-binding activity of CSPs. Similarly, these side chains were also essential for elicitor activity and replacement of single residues in csp15 with Ala strongly reduced or abolished activity. Most strikingly, csp15-Ala10, a peptide with the RNP-1 motif modified to KGAGFITP, lacked elicitor activity but acted as a competitive antagonist for CSP-related elicitors. Bacteria commonly have a small family of CSP-like proteins including both cold-inducible and noninducible members, and Csp-related elicitor activity was detected in extracts from all bacteria tested. Thus, the CSP domain containing the RNP-1 motif provides a structure characteristic for bacteria in general, and tobacco plants have evolved a highly sensitive chemoperception system to detect this bacterial PAMP.  相似文献   

15.
16.
Drug repurposing or repositioning is an important part of drug discovery that has been growing in the last few years for the development of therapeutic options in oncology. We applied this paradigm in a screening of a library of about 3,800 compounds (including FDA-approved drugs and pharmacologically active compounds) employing a model of metastatic pheochromocytoma, the most common tumor of the adrenal medulla in children and adults. The collection of approved drugs was screened in quantitative mode, testing the compounds in compound-titration series (dose-response curves). Analysis of the dose-response screening data facilitated the selection of 50 molecules with potential bioactivity in pheochromocytoma cells. These drugs were classified based on molecular/cellular targets and signaling pathways affected, and selected drugs were further validated in a proliferation assay and by flow cytometric cell death analysis. Using meta-analysis information from molecular targets of the top drugs identified by our screening with gene expression data from human and murine microarrays, we identified potential drugs to be used as single drugs or in combination. An example of a combination with a synergistic effect is presented. Our study exemplifies a promising model to identify potential drugs from a group of clinically approved compounds that can more rapidly be implemented into clinical trials in patients with metastatic pheochromocytoma or paraganglioma.  相似文献   

17.
Lung cancer continues to be the most common cause of cancer-related mortality worldwide. Recent advances in molecular diagnostics and immunotherapeutics have propelled the rapid development of novel treatment agents across all cancer subtypes, including lung cancer. Additionally, more pharmaceutical therapies for lung cancer have been approved by the US Food and Drug Administration in the last 5 years than in previous two decades. These drugs have ushered in a new era of lung cancer managements that have promising efficacy and safety and also provide treatment opportunities to patients who otherwise would have no conventional chemotherapy available. In this review, we summarize recent advances in lung cancer therapeutics with a specific focus on first in-human or early-phase I/II clinical trials. These drugs either offer better alternatives to drugs in their class or are a completely new class of drugs with novel mechanisms of action. We have divided our discussion into targeted agents, immunotherapies, and antibody drug conjugates for small cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC). We briefly review the emerging agents and ongoing clinical studies. We have attempted to provide the most current review on emerging therapeutic agents on horizon for lung cancer.  相似文献   

18.
19.
It has been reported that genes encoding antigens of bacterial and viral pathogens can be expressed in plants and are shown to induce protection antibodies. The structural protein E2 of classical swine fever virus (CSFV), which has been shown to carry critical epitopes, has been expressed in different systems. Here, we report the expression of CFSV E2 gene in tobacco chloroplasts. Mice immunized with leaf extracts elicited specific antibodies. This indicated that the expressed E2 proteins had a certain degree of immunogenicity. To our knowledge, this is the first report showing induction of protective antibody in response to classical swine fever virus (CSFV) by immunization with antigen protein E2 expressed in tobacco chloroplasts, which will open a new way to protection from CSFV by plant chloroplasts as bioreactors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号