首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ascorbic acid reduces airway reactivity to inhaled bronchoconstrictor agents in man and guinea pigs. The precise mechanism(s) responsible for this effect are unknown, but in both species an acute indomethacin treatment reverses the action of the ascorbic acid. To determine if ascorbic acid promotes prostanoid synthesis and/or inhibits degradation, human lung parenchymal slices (100-200 mg) were incubated for 60 minutes in oxygenated Tyrode's solution alone or with sodium ascorbate (0.001 M-1 M) and/or methacholine (1 microM-100 microM) and/or indomethacin (0.17 microM-17 microM). Aliquots of the incubation medium were assayed by radioimmunoassay for PGE2, PGF2 alpha, thromboxane B2 and 6-keto-PGF1 alpha. Ascorbic acid increased the accumulation of all four prostanoids in the incubation medium, especially thromboxane B2 and 6-keto-PGF1 alpha. This stimulatory effect of ascorbic acid was concentration-dependent and was inhibited by indomethacin. We conclude that ascorbic acid can alter prostanoid generation by human lung tissue and this effect may, in part, explain its antibronchoconstrictor activity in man.  相似文献   

2.
We investigated the formation and pharmacology of prostaglandin E(3) (PGE(3)) derived from fish oil eicosapentaenoic acid (EPA) in human lung cancer A549 cells. Exposure of A549 cells to EPA resulted in the rapid formation and export of PGE(3.) The extracellular ratio of PGE(3) to PGE(2) increased from 0.08 in control cells to 0.8 in cells exposed to EPA within 48 h. Incubation of EPA with cloned ovine or human recombinant cyclooxygenase 2 (COX-2) resulted in 13- and 18-fold greater formation of PGE(3), respectively, than that produced by COX-1. Exposure of A549 cells to 1 microM PGE(3) inhibited cell proliferation by 37.1% (P < 0.05). Exposure of normal human bronchial epithelial (NHBE) cells to PGE(3), however, had no effect. When A549 cells were exposed to EPA (25 microM) or a combination of EPA and celecoxib (a selective COX-2 inhibitor), the inhibitory effect of EPA on the growth of A549 cells was reversed by the presence of celecoxib (at both 5 and 10 microM). This effect appears to be associated with a 50% reduction of PGE(3) formation in cells treated with a combination of EPA and celecoxib compared with cells exposed to EPA alone. These data indicate that exposure of lung cancer cells to EPA results in a decrease in the COX-2-mediated formation of PGE(2), an increase in the level of PGE(3), and PGE(3)-mediated inhibition of tumor cell proliferation.  相似文献   

3.
Acetaminophen is a widely used antipyretic and analgesic drug whose mechanism of action has recently been suggested to involve inhibitory effects on prostaglandin synthesis via a newly discovered cyclooxygenase variant (COX-3). Because COX-3 expression is high in cerebral endothelium, we investigated the effect of acetaminophen on the prostaglandin production of cultured rat cerebral endothelial cells (CECs). Acetaminophen dose-dependently inhibited both basal and LPS-induced PGE(2) production in CECs with IC(50) values of 15.5 and 6.9 microM, respectively. Acetaminophen also similarly inhibited the synthesis of 6-keto-PGF(1alpha) and thromboxane B(2). LPS stimulation increased the expression of COX-2 but not COX-1 or COX-3. In addition, the selective COX-2 inhibitor NS398 (1 microM) was equally as effective as acetaminophen in blocking LPS-induced PGE(2) production. Acetaminophen did not influence the expression of the three COX isoforms and the inducible nitric oxide synthase. In LPS-stimulated isolated cerebral microvessels, acetaminophen also significantly inhibited PGE(2) production. Our results show that prostaglandin production in CECs during basal and stimulated conditions is very sensitive to inhibition by acetaminophen and suggest that acetaminophen acts against COX-2 and not COX-1 or COX-3. Furthermore, our findings support a critical role for cerebral endothelium in the therapeutic actions of acetaminophen in the central nervous system.  相似文献   

4.
Ascorbic acid reduces airway reactivity to inhaled bronchoconstrictor agents in man and guinea pigs. The precise mechanism(s) responsible for this effect are unknown, but in both species an acute indomethacin treatment reverses the action of the ascorbic acid. To determine if ascorbic acid promotes prostanoid synthesis and/or inhibits degradation, human lung parenchymal slices (100–200mg) were incubated for 60 minutes in oxygenated Tyrode's solution alone or with sodium ascorbate (0.001M–1M) and/or methacholine (1μM–100μM) and/or indomethacin (0.17μM–17μM). Aliquots of the incubation medium were assayed by radioimmunoassay for PGE2, PGF, thromboxane B2 and 6-keto-PGF. Ascorbic acid increased the accumulation of all four prostanoids in the incubation medium, especially thromboxane B2 and 6-keto-PGF. This stimulatory effect of ascorbic acid was concentration-dependent and was inhibited by indomethacin. We conclude that ascorbic acid can alter prostanoid generation by human lung tissue and this effect may, in part, explain its antibronchoconstrictor activity in man.  相似文献   

5.
The objectives of this study were to determine ascorbic acid stability and its effect on antiproteinase activity of seminal plasma in the presence of an oxidant. Effect of seminal plasma, and additives: glutathione, albumin, hydrogen peroxide and Tris buffer, on ascorbic acid degradation was investigated by UV absorbance. Antiproteinase against trypsin amidase activity was measured spectrophotometrically using N-benzoyl-DL-arginine-p-nitroanilide (BAPNA) as substrate. Ascorbic acid was destroyed much more rapidly with the addition of hydrogen peroxide than in Tris buffer at pH 8.2 alone. Seminal plasma protected ascorbic acid more efficiently than glutathione and albumin alone. The protective effect of seminal plasma on ascorbic acid degradation may closely relate to the function of ascorbic acid in reproductive system of scurvy-prone animals including teleost fish. Within the range of 1–8 mM concentrations, ascorbic acid had a pro-oxidant action on seminal plasma antiproteinase activityin vitro when they were incubated with hydrogen peroxide.Abbreviations AA Ascorbic acid - BAPNA N-benzoyl-DL-arginine-p-nitroanilide - DMSO dimethyl sulfoxide - GSH glutathione - H2O2 hydrogen peroxide  相似文献   

6.
Two series of phenylsulphonyl urenyl chalcone derivatives (UCH) with various patterns of substitution were tested for their effects on nitric oxide (NO) and prostaglandin E2 (PGE2) overproduction in RAW 264.7 macrophages. None of the tested compounds reduced NO production more than 50% at 10 microM but most of them inhibited the generation of PGE2 with IC50 values under the micromolar range. Me-UCH 1, Me-UCH 5, Me-UCH 9, Cl-UCH 1, and Cl-UCH 9 were selected to evaluate their influence on human leukocyte functions and eicosanoids generation. These derivatives selectively inhibited cyclo-oxygenase-2 (COX-2) activity in human monocytes being Me-UCH 5 the most potent (IC50 0.06 microM). Selected compounds also reduced leukotriene B4 synthesis in human neutrophils by a direct inhibition of 5-lipoxygenase (5-LO) activity, with IC50 values from 0.5 to 0.8 microM. In addition, lysosomal enzyme secretion, such as elastase or myeloperoxidase as well as superoxide generation in human neutrophils were also reduced in a similar range. Our findings indicate that UCH derivatives exert a dual inhibitory effect on COX-2/5-LO activity. The profile and potency of these compounds may have relevance for the modulation of the inflammatory and nociceptive responses with reduction of undesirable side-effects associated with NSAIDs.  相似文献   

7.
Flavonoids are natural polyphenolic compounds ubiquitously present in the plant kingdom. They are reported to exhibit numerous beneficial health effects. In the present study, we demonstrate the potential effects of different flavonoids on cytokines mediated cyclooxygenase-2 and inducible nitric oxide synthase expression and activities in A549 cell line using quercetin, amentoflavone and flavanone. Our data revealed that quercetin, at 50 micro M concentration inhibited PGE(2) biosynthesis by A549 very strongly with little effect on COX-2 mRNA and protein expression. Unlike quercetin, amentoflavone inhibited both PGE(2) biosynthesis and COX-2 mRNA and protein expression strongly. In another set of experiment, quercetin inhibited iNOS protein expression completely without affecting iNOS mRNA expression. In contrast, amentoflavone although exerted no inhibitory effect on iNOS mRNA expression, did inhibit weakly iNOS protein expression. Flavanone had no inhibitory effect on either enzyme at the same concentration. Taken together, our data indicated that amentoflavone and quercetin differentially exerted supression of PGE(2) biosynthesis via downregulation of COX-2/iNOS expression.  相似文献   

8.
beta-Carotene, alpha-tocopherol, and ascorbic acid were tested for their ability to inhibit, enhance, or react synergistically with O(2) (15, 150, 760 torr) and, 2,2'-azobis (2-amidino-propane) dihydrochloride (AAPH) or 1,1'-azobis (cyclohexane-carbonitrile) (ACCN) in isolated rat liver microsomes. beta-Carotene did not protect against lipid peroxidation, i.e., malondialdehyde (MDA) formation, in microsomal samples incubated at 37 degrees C with aqueous soluble AAPH at all added beta-carotene concentrations and oxygen tensions. More MDA (16%, p < 0.001) was produced at 15 torr of O(2,) and 160 nmol/mg protein of beta-carotene compared to respective vehicle control. Individually, alpha-tocopherol and ascorbic acid exhibited antioxidant protection (ascorbic acid &z.Gt; alpha-tocopherol); however, a mixture of both compounds was no more protective than ascorbic acid alone. beta-Carotene demonstrated a concentration-dependent antioxidant affect at 15 torr O(2) (p < 0.01); but a prooxidant effect at higher O(2) at 150 and 760 torr (>57%, p < 0.001) by lipid-soluble ACCN. alpha-Tocopherol exhibited concentration-dependent inhibitory effects on microsomal MDA formation at all oxygen tensions, but was most effective under 150 torr. Ascorbic acid demonstrated a concentration-dependent antioxidant effect only at 150 torr. ACCN-induced lipid peroxidation was no greater for the combination of the three compounds than ascorbic acid added alone. Thus, antioxidant or prooxidant activities for beta-carotene, alpha-tocopherol, and ascorbic acid in microsomal suspensions are related to O(2) tension, solubility, antioxidant concentrations and are governed by complex interactions. Differences between AAPH- and ACCN-induced lipid peroxidation are related to differences in lipid solubility.  相似文献   

9.
Arachidonic acid is metabolised via the cyclo-oxygenase pathway to several biologically active metabolites. These metabolites control important reproductive functions like luteolysis of the corpus luteum. The metabolism of arachidonic acid was studied by the enzymatic conversion of [1-14C]-labelled arachidonic acid in sheep endometrial tissue. The inhibitory capacity of sheep endometrial tissue was measured by the enzymatic conversion of [1-14C]-arachidonic acid by sheep seminal vesicular gland microsomes. Endometrial microsomes converted arachidonic acid into different prostaglandins and monohydroxy acids but at a low rate. A factor(s) inhibiting both prostaglandin and monohydroxy acid synthesis was found in both the microsomal and cytosolic fractions of endometrial tissue. A very high inhibitory potency of prostaglandin and monohydroxy acid synthesis, calculated as IC50 values, was found in cytosolic fractions. For comparison IC50 values of indomethacin, mefenamic acid, carprofen and acetylsalicylic acid were also calculated in this in vitro system. These data indicate that both prostaglandin and monohydroxy acid synthesizing capacities and an inhibitory factor(s) are present in sheep endometrium and possibly regulate arachidonic acid metabolism in this tissue.  相似文献   

10.
Cytochrome P-450 monooxygenase (epoxygenase)-derived arachidonic acid (AA) metabolites, including 11,12-epoxyeicosatrienoic acid (11,12-EET), possess anti-inflammatory and antipyretic properties. Prostaglandin E2 (PGE2), a cyclooxygenase (COX)-derived metabolite of AA, is a well-defined mediator of fever and inflammation. We have tested the hypothesis that 11,12-EET attenuates synthesis of PGE2 in monocytes, which are the cells that are indispensable for induction of fever and initiation of inflammation. Monocytes isolated from freshly collected rat blood were stimulated with lipopolysaccharide (LPS; 100 ng/2 x 10(5) cells) to induce COX-2 and stimulate generation of PGE2. SKF-525A, an inhibitor of epoxygenases, significantly augmented the lipopolysaccharide-provoked synthesis of PGE2 in cell culture in a concentration-dependent manner. It did not affect, however, elevation of the expression of COX-2 protein in monocytes stimulated with LPS. 11,12-EET also did not affect the induction of COX-2 in monocytes incubated with lipopolysaccharide. However, 11,12-EET suppressed, in a concentration-dependent fashion, the generation of PGE2 in incubates. Preincubation of a murine COX-2 preparation for 0-5 min with three concentrations of 11,12-EET (1, 5, and 10 microM) inhibited the oxygenation of [14C]-labeled AA by the enzyme. The inhibitory effect of 11,12-EET on COX-2 was time-and-concentration-dependent, suggesting a mechanism-based inhibition. Based on these data, we conclude that 11,12-EET suppresses generation of PGE2 in monocytes via modulating the activity of COX-2. These data support the hypothesis that epoxygenase-derived AA metabolites constitute a negative feedback on the enhanced synthesis of prostaglandins upon inflammation.  相似文献   

11.
Ascorbic acid in soluble extracts of neural tissue can account for the increase in surface acetylcholine receptors (AChR's) seen on L5 myogenic cells treated with crude brain extract (Knaack, D., and T. R. Podleski, 1985, Proc. Natl. Acad. Sci. USA., 82:575-579). The present study further elucidates the nature of the response of L5 cells to ascorbic acid. Light autoradiography showed that ascorbic acid treatment affects both the number and distribution of surface AChR's. Ascorbic acid, like crude brain extracts, caused a three- to fourfold increase in average AChR site density. However, the number of AChR clusters induced by ascorbic acid was only one-fifth that observed with crude brain extract. The rate constant for degradation of AChR in ascorbic acid-treated cells of 0.037 +/- 0.006 h-1 (t1/2 = 19 h) was not significantly different from that in untreated controls of 0.050 +/- 0.001 h-1 (t1/2 = 14 h). The increase in AChR site density is primarily due to a 2.8-fold increase in the average rate of AChR incorporation. Ascorbic acid also stimulates thymidine incorporation and increases the total number of nuclei per culture. However, cellular proliferation is not responsible for the increase in AChR's since 10 microM cytosine arabinofuranoside blocks the mitogenic effect without affecting the AChR increase. The specificity of ascorbic acid on AChR expression was established by showing that (a) ascorbic acid produced only a slight increase in total protein, which can be accounted for by the mitogenic effect, and (b) the normal increase seen in creatine kinase activity during muscle differentiation was not altered by the addition of ascorbic acid. We conclude that the action of ascorbic acid on AChR number cannot be explained by changes in cell growth, survival, differentiation, or protein synthesis. Therefore, in addition to a minor stimulation of AChR clustering, ascorbic acid specifically affects some aspect of the AChR biosynthetic pathway.  相似文献   

12.
The metabolism of radiolabeled arachidonic acid (AA) by the intact bovine retina in vitro has been studied. Synthesis of prostaglandins (PGs) and hydroxyeicosatetraenoic acids (HETEs), and incorporation of AA into glycerolipids has been measured by reverse-phase and straight-phase high performance liquid chromatography with flow scintillation detection, and by thin-layer chromatography. AA was actively acylated into glycerolipids, particularly triglycerides, phosphatidylcholine and phosphatidylinositol. AA was also converted to the major PGs, PGF2 alpha, PGE2, PGD2, 6-keto-PGF1 alpha and TXB2, and to the lipoxygenase reaction products, 12-HETE, 5-HETE, and other monohydroxy isomers. Approximately 6% of the radiolabeled AA was converted to eicosanoids. The synthesis of HETEs was inhibited in a concentration-dependent manner (IC50 = 8.3 nM) by nordihydroguaiaretic acid (NDGA). PG synthesis was inhibited by aspirin (10 microM), indomethacin (1 microM) and NDGA (IC50 = 380 nM). Metabolism of AA via lipoxygenase, cyclooxygenase and activation-acylation was inhibited by boiling retinal tissue prior to incubation. These studies demonstrate an active system for the uptake and utilization of AA in the bovine retina, and provide the first evidence of lipoxygenase-mediated metabolism of AA, resulting in the synthesis of mono-hydroxyeicosatetraenoic acids, in the retina.  相似文献   

13.
The role of protein kinase C (PKC) in the control of prostaglandin production by the human amnion was studied. Amnion membranes delivered spontaneously at term were minced and treated with phorbol esters, protein kinase inhibitors, cycloheximide, and actinomycin D; prostaglandin E2 (PGE2) output then was determined. Untreated tissue produced 3.97 +/- 1.13 ng PGE2/micrograms DNA/14 h (mean +/- SEM, n = 19). Phorbol dibutyrate and 12-O-tetradecanoylphorbol-13-acetate (TPA) stimulated PGE2 output up to 20-fold in a concentration-dependent manner with potencies corresponding to their efficacy as PKC activators. Four-beta-phorbol and 4-methoxy-TPA, which do not stimulate PKC, did not affect PGE2 output. Stimulation by TPA was blocked by staurosporine (IC50 = 57 nM) and H7; however, these PKC inhibitors did not decrease basal prostaglandin production. Cycloheximide inhibited basal and TPA-promoted PGE2 production and amino acid incorporation. Actinomycin D abolished TPA stimulation without decreasing unstimulated prostaglandin synthesis. These results show that amnion PGE2 production after labor is not maintained by PKC action, but PKC activation in this tissue causes a protein synthesis-dependent and RNA synthesis-dependent increase of PGE2 output. However, basal PGE2 production is dependent upon protein synthesis which, presumably, utilizes pre-existing mRNAs.  相似文献   

14.
Factors affecting the balance between pro- and antioxidant effects of ascorbic acid and glutathione were studied in soybean phosphatidylcholine liposomes challenged with Fe2+/H2O2. Effective antioxidant protection by alpha-tocopherol appeared to be due to efficient reaction with lipid oxy-radicals in the bilayer rather than to interception of initiating oxygen radicals. At concentrations above a threshold level of approximately 0.2 mol % (based on phospholipid content), alpha-tocopherol completely suppressed lipid oxy-radical propagation, which was measured as malondialdehyde production. Both ascorbic acid and glutathione, alone or in combination, enhanced lipid oxy-radical propagation. Alpha-Tocopherol, incorporated into liposomes at concentrations above its threshold protective level, reversed the pro-oxidant effects of 0.1-1.0 mM ascorbic acid but not those of glutathione. Ascorbic acid also prevented alpha-tocopherol depletion. The combination of ascorbic acid and subthreshold levels of alpha-tocopherol only temporarily suppressed lipid oxy-radical propagation and did not maintain the alpha-tocopherol level. Glutathione antagonized the antioxidant action of the alpha-tocopherol/ascorbic acid combination regardless of alpha-tocopherol concentration. These observations indicate that membrane alpha-tocopherol status can control the balance between pro- and antioxidant effects of ascorbic acid. The data also provide the most direct evidence to date that ascorbic acid interacts directly with components of the phospholipid bilayer.  相似文献   

15.
Major compounds of several commonly used botanicals, including turmeric, have been purported to have anti-inflammatory actions. In order to test the anti-inflammatory activity of compounds isolated from rhizomes of Curcuma longa L. (Zingiberaceae), we have established an in vitro test system. HL-60 cells were differentiated and exposed to lipopolysaccharide (LPS) from Escherichia coli (1 microg/ml) in the presence or absence of botanical compounds for 24 h. Supernatants were collected and analyzed for the production of tumor necrosis factor alpha (TNF-alpha) and prostaglandin E2 (PGE2) using standard ELISA assays. Water-soluble extracts were not cytotoxic and did not exhibit biological activity. Organic extracts of turmeric were cytotoxic only at concentrations above 50 microg/ml. Crude organic extracts of turmeric were capable of inhibiting LPS-induced TNF-alpha (IC50 value = 15.2 microg/ml) and PGE2 (IC50 value = 0.92 microg/ml) production. Purified curcumin was more active than either demethoxy- or bisdemethoxycurcumin. Fractions and subfractions of turmeric extracts collected via preparative HPLC had differing biological activity, ranging from no activity to IC50 values of < 1 microg/ml. For some fractions, subfractionation resulted in a loss of activity, indicating interaction of the compounds within the fraction to produce an anti-inflammatory effect. A combination of several of the fractions that contain the turmeric oils was more effective than the curcuminoids at inhibiting PGE2. While curcumin inhibited COX-2 expression, turmeric oils had no effect on levels of COX-2 mRNA.  相似文献   

16.
Although the role of arachidonic acid (AA) in the regulation of steroidogenesis is well documented, the mechanism for AA release is not clear. Therefore, the aim of this study was to characterize the role of an acyl-CoA thioesterase (ARTISt) and an acyl-CoA synthetase as members of an alternative pathway in the regulation of the intracellular levels of AA in steroidogenesis. Purified recombinant ARTISt releases AA from arachidonoyl-CoA (AA-CoA) with a Km of 2 micro m. Antibodies raised against recombinant acyl-CoA thioesterase recognize the endogenous protein in both adrenal tissue and Y1 adrenal tumor cells by immunohistochemistry and immunocytochemistry and Western blot. Stimulation of Y1 cells with ACTH significantly stimulated endogenous mitochondrial thioesterases activity (1.8-fold). Nordihydroguaiaretic acid (NDGA), an inhibitor of AA release known to affect steroidogenesis, affects the in vitro activity of recombinant ARTISt and also the endogenous mitochondrial acyl-CoA thioesterases. ACTH-stimulated steroid synthesis in Y1 cells was significantly inhibited by a synergistic effect of NDGA and triacsin C an inhibitor of the AA-CoA synthetase. The apparent IC50 for NDGA was reduced from 50 micro m to 25, 7.5 and 4.5 micro m in the presence of 0.1, 0.5 and 2 micro m triacsin C, respectively. Our results strongly support the existence of a new pathway of AA release that operates in the regulation of steroid synthesis in adrenal cells.  相似文献   

17.
The purpose of this investigation was to study the mechanism of stimulation of PGE2 output from human amnion epithelial cells by the synthetic glucocorticoid dexamethasone. Cells incubated in serum-free pseudo-amniotic fluid produced very low levels of PGE2, even when arachidonic acid (1 microM) was present. Pretreatment of cells with dexamethasone (50 nM) for 21 h increased the PGE2 output 6- to 7-fold in 2-h incubations only in the presence of arachidonic acid. The RNA synthesis inhibitor, actinomycin D (1 microgram/ml), and the protein synthesis inhibitor, cycloheximide (40 micrograms/ml), each blocked dexamethasone-stimulated arachidonic acid conversion to PGE2. The time course of these events suggests that dexamethasone first initiates RNA synthesis. Acetylsalicylic acid, a specific and irreversible blocker of prostaglandin endoperoxide H synthase (cyclooxygenase), was used to determine whether dexamethasone could stimulate new enzyme synthesis. Cells treated first with acetylsalicylic acid (30 min) then dexamethasone (22 h) produced as much PGE2 in response to 1 microM arachidonate as did cells exposed to dexamethasone only. Exposing cells to acetylsalicylic acid after dexamethasone completely eliminated PGE2 output. These data suggest that dexamethasone stimulates the synthesis of prostaglandin endoperoxide H synthase.  相似文献   

18.
In the present work,we investigated the effect of ascorbic acid and glutathione on hemolysisinduced by hemin in erythrocytes.Ascorbic acid not only enhanced hemolysis,but also induced formationof thiobarbituric acid-reactive substances in the presence of hemin.It has been shown that glutathioneinhibits hemin-induced hemolysis by mediating hemin degradation.Erythrocytes depleted of glutathionebecame very sensitive to oxidative stress induced by hemin and ascorbic acid.H_2O_2 was involved in hemin-mediated hemolysis in the presence of ascorbic acid.However,a combination of glutathione and ascorbicacid was more effective in inhibiting hemolysis induced by hemin than glutathione alone.Extracellular andintracellular ascorbic acid exhibited a similar effect on hemin-induced hemolysis or inhibition of hemin-induced hemolysis by glutathione.The current study indicates that ascorbic acid might function as anantioxidant or prooxidant in hemin-mediated hemolysis,depending on whether glutathione is available.  相似文献   

19.
The inhibitory effects of 15 flavonoids on animal fatty acid synthase (FAS, EC 2.3.1.85) were investigated, and 9 of them were found to inhibit FAS with IC(50) (the inhibitor concentration inhibiting 50% of the activity of FAS) values ranging from 2 to 112 microM. A structure-activity relationship study showed that the flavonoids containing two hydroxyl groups in the B ring and 5,7-hydroxyl groups in the A ring in combination with a C-2, 3 double bond were the most inhibitory. Morin (IC(50) = 2.33 +/- 0.09 microM) was further investigated kinetically to detail the inhibitory mechanism. The results showed that morin inhibited the overall reaction of FAS competitively with Ac-CoA, noncompetitively with Mal-CoA and in a mixed manner with NADPH. The study indicated that morin bound reversibly to the beta-ketoacyl synthase domain of FAS to inhibit the elongation of the saturated acyl groups in fatty acids synthesis.  相似文献   

20.
Platelet-derived growth factor (PDGF) is a biological mediator for connective tissue cells and plays a critical role in a wide variety of physiological and pathological processes. We here investigated the effect of PDGF on arachidonic acid release and prostaglandin E(2) (PGE(2)) synthesis in human gingival fibroblasts (HGF). PDGF induced arachidonic acid release in a time- and dose-dependent manner, and simultaneously induced a transient increase in intracellular Ca(2+) concentration ([Ca(2+)](i)), but less provoked PGE(2) release and cyclooxygenase-2 (COX-2) mRNA expression. When [Ca(2+)](i) was increased by Ca(2+)-mobilizing reagents, arachidonic acid release was increased. The PDGF-induced arachidonic acid release and increase in [Ca(2+)](i) were prevented by a tyrosine kinase inhibitor. On the other hand, in the HGF pre-stimulated with interleukin-1beta (IL-1beta), PDGF clearly increased PGE(2) release. The PDGF-induced PGE(2) release was inhibited by a tyrosine kinase inhibitor. In the HGF pretreated with IL-1beta, arachidonic acid strongly enhanced PGE(2) release and COX-2 mRNA expression. These results suggest that PDGF stimulates arachidonic acid release by the increase in [Ca(2+)](i) via tyrosine kinase activation, and which contributes to PGE(2) production via COX-2 expression in HGF primed with IL-1beta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号