首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Freshly isolated rat hepatocytes contained a high level (30–40 nmol/106 cells) of reduced glutathione (GSH) which decreased steadily upon incubation in an amino acid containing medium lacking cysteine and methionine. This decrease in GSH level was prevented, and turned into a slight increase, when either cysteine, N-acetylcysteine, or methionine was also present in the medium. The amino acid uptake into hepatocytes was more rapid with cysteine than with methionine. Cystine was not taken up, or taken up very slowly, by the cells and could not be used to prevent the decrease in GSH level which occurred in the absence of cysteine and methionine. The level of GSH in hepatocytes freshly isolated from rats pretreated with diethylmaleate was markedly decreased (to ~5 nmol/106 cells) but increased rapidly upon incubation of the cells in a medium containing amino acids including either cysteine, N-acetylcysteine, or methionine. Again, cysteine was taken up into the cells more rapidly than methionine. The rate of uptake of cysteine was moderately enhanced in hepatocytes with a lowered level of intracellular GSH as compared to cells with normal GSH concentration. Exclusion of glutamate and/or glycine from the medium did not markedly affect the rate of resynthesis of GSH by hepatocytes incubated in the presence of exogenously added cysteine or methionine. Incubation of hepatocytes with bromobenzene in an amino acid-containing medium lacking cysteine and methionine resulted in accelerated cell damage. Addition of either cysteine, N-acetylcysteine, or methionine to the medium caused a decrease in bromobenzene toxicity. The protective effect was dependent, however, on the time of addition of the amino acid to the incubate; e.g., the effect on bromobenzene toxicity was greatly reduced when either cysteine or methionine was added after 1 h of preincubation of the hepatocytes with bromobenzene as compared to addition at zero time. This decrease in protective effect in bromobenzene-exposed cells was related to a similar decrease in the rate of uptake of cysteine and methionine into hepatocytes preincubated with bromobenzene. The rate of uptake, and incorporation into cellular protein, of leucine was also markedly inhibited in hepatocytes preincubated with bromobenzene. In contrast, there was no measurable change in the rate of release of leucine from cellular protein as a result of incubation of hepatocytes with bromobenzene. It is concluded that the presence of cysteine, N-acetylcysteine, or methionine in the medium protects hepatocytes from bromobenzene toxicity by providing intracellular cysteine for GSH biosynthesis and suggested that an inhibitory effect on amino acid uptake may contribute to the cytotoxicity of bromobenzene in hepatocytes.  相似文献   

2.
T Xin  F Zhang  Q Jiang  C Chen  D Huang  Y Li  W Shen  Y Jin 《Carbohydrate polymers》2012,90(2):1127-1131
One polysaccharide PTP was isolated and purified from the roots of Polygala tenuifolia. It consisted of galactose, glucose and galactose in the ratio of 3.1:3.7:2.5, and a small amount of rhamnose, mannose and xylose. 17 general amino acids were identified to be components of the protein-bound polysaccharide analyzed by automatic amino acid analyzer. In order to test the anti-cancer activity of PTP, we investigated its effect against the growth of human ovarian cancer cells SKOV3 in vitro and in ovarian cancer rats. The intracellular reactive oxygen species (ROS) and glutathione (GSH) in SKOV3 cells following PTP treatment were also quantified to explore the possible mechanism underlying the antitumor activity of the polysaccharide. The result showed that PTP is effective on inhibiting the proliferation of SKOV3 cells in a concentration-dependent manner. Furthermore, treatment with PTP caused a rapid depletion of intracellular GSH content and accumulation of intracellular ROS, thus resulting in the apoptosis, which may prove to be a pivotal mechanism for its cancer protection action. In addition, a significant tumor growth inhibition effect was observed in nude mice after PTP administration for 7 weeks. All above indicated PTP could be beneficial towards ovarian cancer therapy.  相似文献   

3.
Reduced glutathione (GSH), but not its oxidized form (GSSG), stimulated development of Onchocerca lienalis microfilariae to the late first-larval stage in vitro. The degree and frequency of development was dose-related with a peak of activity at 15 mM, a concentration that is similar to known intracellular levels of GSH. To determine the mode(s) of action of this multifunctional compound, other reducing agents (L-cysteine, dithiothreitol), cysteine delivery agents (N-acetyl-L-cysteine, L-thiazolidine-4-carboxylic acid, L-2-oxothiazolidine-4-carboxylic acid), cysteine analogues (S-methyl-L-cysteine, D-glucose-L-cysteine, cysteine ethyl ester), free-component amino acids of GSH (glutamic acid, cysteine, and glycine), a specific metabolic inhibitor of gamma-glutamyl synthetase (buthionine sulfoximine), and an inhibitor of gamma-glutamyl transpeptidase (gamma-glutamyl glutamic acid) were also tested at concentrations of 0.01-50 mM in this system. N-acetyl-L-cysteine at 1-5 mM and D-glucose-L-cysteine at 2.5-10 mM significantly enhanced development. In contrast to those worms maintained in GSH-supplemented medium, microfilariae exposed to GSH for only the first 24 hr showed no enhancement by day 7 in culture. Neither buthionine sulfoximine nor gamma-glutamyl glutamic acid at 0.01-35 mM inhibited the effects of 15 mM GSH or 1 mM N-acetyl-L-cysteine. Results indicate that GSH or other cysteine analogues possessing a free sulfhydryl group must be present in the extranematodal environment to support microfilarial differentiation in vitro.  相似文献   

4.
Since they are equipped with several strategies by which they evade the antimicrobial defense of host macrophages, it is surprising that members of the genus Haemophilus appear to be deficient in common antioxidant systems that are well established to protect prokaryotes against oxidative stress. Among others, no genetic evidence for glutathione (gamma-Glu-Cys-Gly) (GSH) biosynthesis or for alkyl hydroperoxide reduction (e.g., the Ahp system characteristic or enteric bacteria) is apparent from the Haemophilus influenzae Rd genome sequence, suggesting that the organism relies on alternative systems to maintain redox homeostasis or to reduce small alkyl hydroperoxides. In this report we address this apparent paradox for the nontypeable H. influenzae type strain NCTC 8143. Instead of biosynthesis, we could show that this strain acquires GSH by importing the thiol tripeptide from the growth medium. Although such GSH accumulation had no effect on growth rates, the presence of cellular GSH protected against methylglyoxal, tert-butyl hydroperoxide (t-BuOOH), and S-nitrosoglutathione toxicity and regulated the activity of certain antioxidant enzymes. H. influenzae NCTC 8143 extracts were shown to contain GSH-dependent peroxidase activity with t-BuOOH as the peroxide substrate. The GSH-mediated protection against t-BuOOH stress is most probably catalyzed by the product of open reading frame HI0572 (Prx/Grx), which we isolated from a genomic DNA fragment that confers wild-type resistance to t-BuOOH toxicity in the Ahp-negative Escherichia coli strain TA4315 and that introduces GSH-dependent alkyl hydroperoxide reductase activity into naturally GSH peroxidase-negative E. coli. Finally, we demonstrated that cysteine is an essential amino acid for growth and that cystine, GSH, glutathione amide, and cysteinylglycine can be catabolized in order to complement cysteine deficiency.  相似文献   

5.
6.
Autonomous ultradian metabolic oscillation (T approximately or =50 min) was detected in an aerobic chemostat culture of Saccharomyces cerevisiae. A pulse injection of GSH (a reduced form of glutathione) into the culture induced a perturbation in metabolic oscillation, with respiratory inhibition caused by H2S burst production. As the production of H2S in the culture was controlled by different amino acids, we attempted to characterize the effects of GSH on amino acid metabolism, particularly with regard to branched chain and sulfur-containing amino acids. During stable metabolic oscillation, concentrations of intracellular glutamate, aspartate, threonine, valine, leucine, isoleucine, and cysteine were observed to oscillate with the same periods of dissolved O2 oscillation, although the oscillation amplitudes and maximal phases were shown to differ. The methionine concentration was stably maintained at 0.05 mM. When GSH (100 microM) was injected into the culture, cellular levels of branched chain amino acids increased dramatically with continuous H2S production, whereas the cysteine and methionine concentrations were noticeably reduced. These results indicate that GSH-dependent perturbation occurs as the result of the promotion of branched chain amino acid synthesis and an attenuation of cysteine and methionine synthesis, both of which activate the generation of H2S. In a low sulfate medium containing 2.5 mM sulfate, the GSH injections did not result in perturbations of dissolved O2, NAD(P)H redox oscillations without burst H2 production. This suggests that GSH-dependent perturbation is intimately linked with the metabolism of branched-chain amino acids and H2 generation, rather than with direct GSH-GSSG redox control.  相似文献   

7.
Suspensions of rat spleen lymphocyte, murine L1210 lymphoma and HeLa cells were partially depleted of glutathione (GSH) with diethyl maleate and allowed to utilize either [35S]methionine, [35S]cystine or [35S]-cysteine for GSH synthesis. Lymphocytes preferentially utilized cysteine, compared to cystine, at a ratio of about 30 to 1, which was not related to differences in the extent of amino acid uptake. Only HeLa cells displayed a slight utilization of methionine via the cystathionine pathway for cysteine and GSH biosynthesis. HeLa and L1210 cells readily utilized either cystine or cysteine for GSH synthesis. The three cell types accumulated detectable levels of intracellular cysteine glutathione mixed disulfide when incubated in a medium containing a high concentration of cystine. Various enzyme activities were measured including gamma-glutamyl transpeptidase, GSH S-transferase and gamma-cystathionase. These results support the concept of a dynamic interorgan relationship of GSH to plasma cyst(e)ine that may have importance for growth of various cell types in vivo.  相似文献   

8.
Cysteine is considered as a conditionally indispensable amino acid. Its dietary supply should thus be increased when endogenous synthesis cannot meet metabolic need, such as during inflammatory diseases. However, studies in animal models suggest a high first-pass extraction of dietary cysteine by the intestine, limiting the interest for an oral supplementation. We investigated here unidirectional fluxes of cysteine across the portal-drained viscera (PDV) of multi-catheterized minipigs, using simultaneous intragastric l-[15N] cysteine and intravenous l-[3,3D2] cysteine continuous infusions. We showed that in minipigs fed with an elemental enteral solution, cysteine first-pass extraction by the intestine is about 60% of the dietary supply, and that the PDV does not capture arterial cysteine. Beside dietary cysteine, the PDV release non-dietary cysteine (20% of the total cysteine release), which originates either from tissue metabolism or from reabsorption of endogenous secretion, such as glutathione (GSH) biliary excretion. Experimental ileitis induced by local administration of trinitrobenzene sulfonic acid, increased liver and ileal GSH fractional synthesis rate during the acute phase of inflammation, and increased whole body flux of cysteine. However, cysteine uptake and release by the PDV were not affected by ileitis, suggesting an adaptation of the intestinal sulfur amino acid metabolism in order to cover the additional requirement of cysteine linked to the increased GSH synthesis. We conclude that the small intestine sequesters large amounts of dietary cysteine during absorption, limiting its release into the bloodstream, and that the other tissues of the PDV (colon, stomach, pancreas, spleen) preferentially use circulating methionine or cysteine-containing peptides to cover their cysteine requirement.  相似文献   

9.
Distinctive pheomelanin-based plumage coloration in juvenile birds has been proposed as a signal of immaturity to avoid aggression by older conspecifics, but recent findings suggest a detoxifying strategy. Pheomelanin synthesis implies the consumption of cysteine, a semi-essential amino acid that is necessary for the synthesis of the antioxidant glutathione (GSH) but that may be toxic if in excess in the diet. As the nestling stage probably represents a low-stress period with limited requirement for GSH protection, the synthesis of pheomelanin in developing birds may help to maintain cysteine homeostasis, particularly in species with a high content of protein in the diet (i.e. carnivores). Here we confirm this hypothesis showing that, among 53 species of Western Palaearctic birds, juvenile pheomelanin-based coloration has evolved more frequently in strictly carnivorous species than in species with other diets.  相似文献   

10.
The effects of dietary glutathione (GSH) on plasma and liver lipid concentrations were investigated with rats fed on a high cholesterol diet. When graded levels of GSH, 0.75 to 5.0%, were added to the 25% casein basal diet, the plasma total cholesterol level was significantly decreased and the HDL-cholesterol level was inversely increased in all addition levels without influence on the growth of animals except for the 5% addition level; the dietary addition of 5% GSH markedly depressed the growth and food consumption of rats and caused a slight diarrhea. Plasma triglyceride and phospholipid levels were decreased by the dietary addition of GSH. The contents of cholesterol and triglyceride in the liver were decreased as the dietary addition level of GSH was increased. The dietary addition of a mixture of glutamic acid, cysteine and glycine, or cysteine alone corresponding to 2.5% GSH resulted in a cholesterol-lowering effect which could not be distinguished from the effect of GSH in rats fed on the 25% casein diet. When 1.5% GSH was added to a low (10%) casein diet, the plasma cholesterol-lowering effect of GSH was also observed and the effect was comparable to that of cysteine. These results indicate that dietary-added GSH has a plasma and liver cholesterol-lowering efficacy and that this effect is largely attributable to the cysteine residue of GSH rather than to the tripeptide itself or the other amino acid residues.  相似文献   

11.
Glucosinolates are activated plant defenses common in the order Brassicales that release isothiocyanates (ITCs) and other hydrolysis products upon tissue damage. The reactive ITCs are toxic to insects resulting in reduced growth, delayed development and occasionally mortality. Generalist lepidopteran larvae often detoxify ingested ITCs via conjugation to glutathione (GSH) and survive on low glucosinolate diets, but it is not known how this process influences other aspects of metabolism. We investigated the impact of the aliphatic 4-methylsulfinylbutyl-ITC (4msob-ITC, sulforaphane) on the metabolism of Spodoptera littoralis larvae, which suffer a significant growth decline on 4msob-ITC-containing diets while excreting ITC-glutathione conjugates and their derivatives in the frass. The most striking effects were a decrease of GSH in midgut tissue and hemolymph due to losses by conjugation to ITC during detoxification, and a decline of the GSH biosynthetic precursor cysteine. Protein content was likewise reduced by ITC treatment suggesting that protein is actively catabolized in an attempt to supply cysteine for GSH biosynthesis. The negative growth and protein effects were relieved by dietary supplementation with cystine. Other consequences of protein breakdown included deamination of amino acids with increased excretion of uric acid and elevated lipid content. Thus metabolic detoxification of ITCs provokes a cascade of negative effects on insects that result in reduced fitness.  相似文献   

12.
Despite reports of lower GSH concentration in sickle cell disease (SCD), the in vivo kinetic mechanism(s) responsible for GSH deficiency is unknown. To determine whether suppressed synthesis was responsible for the lower erythrocyte GSH concentration, we used a primed intermittent infusion of [(2)H(2)]glycine to measure erythrocyte GSH synthesis in vivo in 23 individuals with homozygous beta(s) SCD and 8 healthy controls. Erythrocyte cysteine concentration, the rate-limiting precursor for GSH synthesis, plasma markers of oxidant damage, and dietary intakes of energy and protein were also measured. Compared with values of controls, SCD subjects had significantly lower erythrocyte GSH (P < 0.04) and cysteine concentrations (P < 0.004) but significantly faster fractional rates of GSH synthesis (P < 0.02). The absolute rates of GSH synthesis in SCD subjects compared with control subjects was greater by approximately 57% (P = 0.062). However, the concentrations of markers of oxidative damage, plasma derivatives of reactive oxygen metabolites, plasma nitrotyrosine, urinary isoprostane-to-creatinine ratio, and GSH-to-GSSG ratio, as well as dietary intakes of energy, protein, and GSH precursor amino acids, were not different between SCD subjects and controls. The findings of this study suggest that the lower erythrocyte GSH of SCD patients is not due to suppressed synthesis or impaired regeneration but rather to increased consumption. In addition, the lower erythrocyte cysteine concentration plus the faster rate of GSH synthesis strongly suggest that the endogenous cysteine supply is not sufficient to meet all anabolic demands; hence, cysteine may be a conditionally essential amino acid in individuals with SCD.  相似文献   

13.
GSH is an important cellular defense against oxidant injury. Its effect in the rat liver microsomal lipid peroxidation system has been examined. Incubation of fresh rat liver microsomes with ascorbic acid and ADP-chelated iron leads to the peroxidation of microsomal lipids (production of thiobarbituric acid-reactive substances and destruction of polyunsaturated fatty acids) following a 2 to 5 min lag. Addition of 0.1 mM GSH to the system lengthened the lag period by 5 to 15 min without affecting the rate or the extent of lipid peroxidation. GSH could not be replaced in prolonging the lag by cysteine, mercaptoethanol, dithiothreitol, propylthiouracil, or GSSG. The GSH effect on the lag was abolished by heating or trypsin digestion of the microsomes, indicating that microsomal protein is required for its expression. Progressively longer lags were observed as the GSH concentration was increased from 0.1 to 5 mM, but there was no evidence of GSH oxidation as a consequence of the protection against lipid peroxidation. GSH protected against heat inactivation of the microsomal protein responsible for the GSH effect. Experiments with an oxygen electrode revealed that the GSH protection did not alter the ratio of O2 consumed to thiobarbituric acid-reactive substances produced. This implicated free radical scavenging as the mechanism of protection. These results indicate the existence of a GSH-dependent rat liver microsomal protein which scavenges free radical. This protein may be an important defense against free radical injury to the microsomal membrane.  相似文献   

14.
Glutathione (GSH; gamma-glutamylcysteinylglycine) is ubiquitous in mammalian and other living cells. It contains an unusual peptide linkage between the amine group of cysteine and the carboxyl group of the glutamate side chain. It has several important functions, including protection against oxidative stress. It is synthesized from its constituent amino acids by the consecutive actions of gamma-glutamylcysteine synthetase and GSH synthetase. Cellular levels of GSH may be increased by supplying substrates and GSH delivery compounds. Increasing cellular GSH may be therapeutically useful. In this study, we investigated the applicability of the glassy carbon electrode coated with thin Hg film layer to the determination of reduced glutathione (GSH). For this purpose, firstly, Hg coating process parameters were studied such as concentration of mercury coating solution, coating current, coating temperature. Then, working conditions were investigated. At the end of these studies, we concluded that although some of limitations, the sensor would be applicable to the determination of reduced glutathione.  相似文献   

15.
A series of GSH analogues with modifications at the gamma-glutamyl moiety was synthesized and purified by following peptide chemistry methodology. Benzyl, benzyloxycarbonyl and t-butyloxycarbonyl protective groups were used to protect individual amino acid functional groups. The formation of peptide bonds was accomplished through coupling of free amino groups with active esters, generated by reaction of the carboxylate functions with dicyclohexylcarbodi-imide and 1-hydroxybenzotriazole. The protecting groups in the tripeptides were removed in a single step by using Na in liquid NH3. Precautions were taken in order to prevent oxidation of the thiol function in the cysteine residue. Thus GSH analogues containing both L- and D-glutamic acid and L- and D-aspartic acid, coupled to cysteinylglycine through both the alpha- and the omega-carboxylate group, were synthesized. Also, decarboxy-GSH and deamino-GSH, lacking one functional group in the glutamate moiety, were prepared. The spontaneous non-enzyme-catalysed nucleophilic reaction of these GSH analogues with the electrophilic model substrate 1-chloro-2,4-dinitrobenzene showed appreciable rate differences, indicating the importance of intramolecular interactions in determining the nucleophilic reactivity of the thiol function in the cysteine residue. In particular, the free amino group in the gamma-L-glutamic acid residue appears to play a crucial role in activating the thiol group in GSH. In an adjacent paper [Adang, Brussee, Meyer, Coles, Ketterer, van der Gen & Mulder (1988) Biochem. J. 255, 721-724] these results are compared with those obtained in a study on the ability of these GSH analogues to act as a co-substrate in the glutathione S-transferase-catalysed conjugation reaction with 1-chloro-2,4-dinitrobenzene.  相似文献   

16.
Ascorbic acid treatment in arsenic trioxide treated rats increased arsenic excretion, inhibited lipid peroxidation, improved GSH status, regulated GSSG turnover and also restored glutathione-S-transferases activity in liver and kidney. Suitable mechanisms leading to ascorbic acid protection have been discussed. Upregulation of GSH dependent enzymes was found to be necessary for a protective effect. Protection is finally attributed to higher GSH levels observed in the liver and kidney of ascorbic acid and inorganic arsenic treated rats. It is also concluded that ascorbic acid protection is influenced by gender dependent factors. Arsenic poisoning is a global problem now. Gender differences need to be considered while applying therapeutic measures.  相似文献   

17.
Kim YG  Kim SK  Kwon JW  Park OJ  Kim SG  Kim YC  Lee MG 《Life sciences》2003,72(10):1171-1181
The changes in amino acid concentrations and transsulfuration enzyme activities in liver were investigated after 4-week fed on 23% casein diet (control group) and 5% casein diet without (protein-calorie malnutrition, PCM group) or with (PCMC group) oral administration of cysteine, 250 mg/kg (twice daily, starting from the fourth week) using rats as an animal model. By supplementation with cysteine in PCM rats (PCMC group), cysteine level was elevated almost close to the control level, and glutathione (GSH), aspartic acid and serine levels were restored greater than the control levels. The measurement of transsulfuration enzyme activities exhibited that gamma-glutamylcysteine ligase (gamma-GCL) activity was up-regulated in rats with protein restriction (PCM group), and cysteine supplementation (PCMC group) down-regulated to the control level. One-week supplementation of cysteine (PCMC group) significantly down-regulated the cysteine sulfinate decarboxylase activity. These results indicate that the availability of sulfur amino acid(s) especially cysteine appears to play a role in determining the flux of cysteine between cysteine catabolism and GSH synthesis.  相似文献   

18.
Antioxidant therapy has been shown to be beneficial in neurological disorders including Alzheimer's disease and cerebral ischemia. Glutamate-induced cytotoxicity in HT-4 neuronal cells has been previously demonstrated to be due to oxidative stress caused by depletion of cellular glutathione (GSH). The present study demonstrates that a wide variety of antioxidants inhibit glutamate-induced cytotoxicity in HT-4 neuronal cells. Low concentrations of alpha-tocopherol and its analogs were highly effective in protecting neuronal cells against cytotoxicity. Purified flavonoids and herbal extracts of Gingko biloba (EGb 761) and French maritime pine bark (Pycnogenol) were also effective. We have previously shown that pro-glutathione agents can spare GSH and protect cells from glutamate insult in a C6 glial cell model. The protective effects of nonthiol-based antioxidants tested in the HT-4 line were not mediated via GSH level modulation. In contrast, protective effects of thiol-based pro-glutathione agents alpha-lipoic acid (LA) and N-acetyl cysteine (NAC) corresponded with a sparing effect on GSH levels in glutamate-treated HT-4 cells. Glutamate-induced cytotoxicity in HT-4 cells is a useful model system for testing compounds or mixtures for antioxidant activity.  相似文献   

19.
Previous studies have shown that cysteine and penicillamine induce gene mutations in Salmonella typhimurium, the effect being strongly potentiated in the presence of mammalian tissue preparations. It has now been demonstrated that homogenate of V79 Chinese hamster cells is an efficient activator of thiol amino acids as well. Nevertheless, L-cysteine and D-penicillamine did not induce gene mutations (acquisition of resistance towards 6-thioguanine) in V79 cells. This was true even in the presence of the most efficient activating system, kidney postmitochondrial fraction. The result suggests the existence of an effective protective system in mammalian cells against the natural amino acid L-cysteine and its therapeutically used derivative, D-penicillamine.  相似文献   

20.
Aoyama K  Watabe M  Nakaki T 《Amino acids》2012,42(1):163-169
Glutathione (GSH) plays essential roles in different processes such as antioxidant defenses, cell signaling, cell proliferation, and apoptosis in the central nervous system. GSH is a tripeptide composed of glutamate, cysteine, and glycine. The concentration of cysteine in neurons is much lower than that of glutamate or glycine, so that cysteine is the rate-limiting substrate for neuronal GSH synthesis. Most neuronal cysteine uptake is mediated through the neuronal sodium-dependent glutamate transporter, known as excitatory amino acid carrier 1 (EAAC1). Glutamate transporters are vulnerable to oxidative stress and EAAC1 dysfunction impairs neuronal GSH synthesis by reducing cysteine uptake. This may start a vicious circle leading to neurodegeneration. Intracellular signaling molecules functionally regulate EAAC1. Glutamate transporter-associated protein 3-18 (GTRAP3-18) activation down-regulates EAAC1 function. Here, we focused on the interaction between EAAC1 and GTRAP3-18 at the plasma membrane to investigate their effects on neuronal GSH synthesis. Increased level of GTRAP3-18 protein induced a decrease in GSH level and, thereby, increased the vulnerability to oxidative stress, while decreased level of GTRAP3-18 protein induced an increase in GSH level in vitro. We also confirmed these results in vivo. Our studies demonstrate that GTRAP3-18 regulates neuronal GSH level by controlling the EAAC1-mediated uptake of cysteine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号