首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The quenching of intrinsic fluorescence of human serum albumin and pigeon liver malic enzyme by acrylamide was studied after the proteins were denatured to different stages. The progress of protein denaturation induced by guanidine hydrochloride was accompanied by increasing of effective dynamic quenching constant which provides a convenient parameter for monitoring protein conformational change.  相似文献   

2.
To evaluate the effects of intrinsic (natural) fluorescence and quenching as confounding variables in fluorescence-based enzyme inhibition assays of natural products, we measured the fluorescence and quenching properties of 25 components of popular herbal products. The analyses were performed under conditions typically employed in drug-drug interaction studies that use c-DNA-derived P450 isoforms and surrogate fluorogenic substrates. Four of the 25 compounds tested (isorhamnetin, quercetin, vitexin, and yangonin) fluoresced or quenched sufficiently to interfere with these assays. Intrinsic fluorescence had a greater effect on these assays than quenching and for one compound, yangonin, was sufficient to mask inhibition and potentially produce a false negative result. Quenching had less of an effect on these assays, but was significant enough for one compound, quercetin, to mimic "weak" inhibition. Therefore, because intrinsic fluorescence or quenching could render some natural products unsuitable for testing in certain fluorometric assays, it would be prudent to include an evaluation of these properties in experimental protocols.  相似文献   

3.
The association properties of acrylamide with a number of proteins in aqueous solution have been investigated by a fluorescence-quenching method previously used in micelles and lipid bilayers (Blatt, E., Chatelier, R.C. and Sawyer, W.H. (1984) Chem. Phys. Lett. 108, 397-400). At pH 7.0, acrylamide partitions between the bulk aqueous phase and the proteins, human serum albumin, monellin and ovalbumin. Comparison with an earlier method of analysis (Sikaris, K.A., Thulborn, K.A. and Sawyer, W.H. (1981) Chem. Phys. Lipids 29, 23-36) confirms the data quantitatively. For human serum albumin at pH 2.2, acrylamide associates according to both partition and binding processes. Equilibrium dialysis experiments performed for the latter system verify that acrylamide associates with proteins.  相似文献   

4.
Purified transglutaminase from human erythrocytes was shown to undergo time dependent inactivation by acrylamide added at millimolar concentration: this effect was wholly dependent on calcium ions and some protection was produced by glutamine substrates and GTP. The enzyme activity was recovered by addition of thiol based reducing agents, while ascorbic acid and sodium borohydrate were ineffective. These data are suggestive of an active site directed action of acrylamide.  相似文献   

5.
Photosystem II (PS II) chlorophyll (Chl) a fluorescence lifetimes were measured in thylakoids and leaves of barley wild-type and chlorina f104 and f2 mutants to determine the effects of the PS II Chl a+b antenna size on the deexcitation of absorbed light energy. These barley chlorina mutants have drastically reduced levels of PS II light-harvesting Chls and pigment-proteins when compared to wild-type plants. However, the mutant and wild-type PS II Chl a fluorescence lifetimes and intensity parameters were remarkably similar and thus independent of the PS II light-harvesting antenna size for both maximal (at minimum Chl fluorescence level, Fo) and minimal rates of PS II photochemistry (at maximum Chl fluorescence level, Fm). Further, the fluorescence lifetimes and intensity parameters, as affected by the trans-thylakoid membrane pH gradient (pH) and the carotenoid pigments of the xanthophyll cycle, were also similar and independent of the antenna size differences. In the presence of a pH, the xanthophyll cycle-dependent processes increased the fractional intensity of a Chl a fluorescence lifetime distribution centered around 0.4–0.5 ns, at the expense of a 1.6 ns lifetime distribution (see Gilmore et al. (1995) Proc Natl Acad Sci USA 92: 2273–2277). When the zeaxanthin and antheraxanthin concentrations were measured relative to the number of PS II reaction center units, the ratios of fluorescence quenching to [xanthophyll] were similar between the wild-type and chlorina f104. However, the chlorina f104, compared to the wild-type, required around 2.5 times higher concentrations of these xanthophylls relative to Chl a+b to obtain the same levels of xanthophyll cycle-dependent fluorescence quenching. We thus suggest that, at a constant pH, the fraction of the short lifetime distribution is determined by the concentration and thus binding frequency of the xanthophylls in the PS II inner antenna. The pH also affected both the widths and centers of the lifetime distributions independent of the xanthophyll cycle. We suggest that the combined effects of the xanthophyll cycle and pH cause major conformational changes in the pigment-protein complexes of the PS II inner or core antennae that switch a normal PS II unit to an increased rate constant of heat dissipation. We discuss a model of the PS II photochemical apparatus where PS II photochemistry and xanthophyll cycle-dependent energy dissipation are independent of the Peripheral antenna size.Abbreviations Ax antheraxanthin - BSA bovine serum albumin - cx lifetime center of fluorescence decay component x - CP chlorophyll binding protein of PS II inner antenna - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DTT dithiothreitol - fx fractional intensity of fluorescence lifetime component x - Fm, Fm maximal PS II Chl a fluorescence intensity with all QA reduced in the absence, presence of thylakoid membrane energization - Fo minimal PS II Chl a fluorescence intensity with all QA oxidized - Fv=Fm–Fo variable level of PS II Chl a fluorescence - HPLC high performance liquid chromatography - kA rate constant of all combined energy dissipation pathways in PS II except photochemistry and fluorescence - kF rate constant of PS II Chl a fluorescence - LHCIIb main light harvesting pigment-protein complex (of PS II) - Npig mols Chl a+b per PS II - NPQ=(Fm/Fm–1) nonphotochemical quenching of PS II Chl a fluorescence - PAM pulse-amplitude modulation fluorometer - PFD photon-flux density, mols photons m–2 s–1 - PS II Photosystem II - P680 special-pair Chls of PS II reaction center - QA primary quinone electron acceptor of PS II - Vx violaxanthin - wx width at half maximum of Lorentzian fluorescence lifetime distribution x - Zx zeaxanthin - pH trans-thylakoid proton gradient - % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqef0uAJj3BZ9Mz0bYu% H52CGmvzYLMzaerbd9wDYLwzYbItLDharqqr1ngBPrgifHhDYfgasa% acOqpw0xe9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8Wq% Ffea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dme% GabaqaaiGacaGaamqadaabaeaafiaakeaacqGH8aapcqaHepaDcqGH% +aGpdaWgaaWcbaGaamOraiaad2gaaeqaaaaa!4989!\[< \tau > _{Fm}\],% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqef0uAJj3BZ9Mz0bYu% H52CGmvzYLMzaerbd9wDYLwzYbItLDharqqr1ngBPrgifHhDYfgasa% acOqpw0xe9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8Wq% Ffea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dme% GabaqaaiGacaGaamqadaabaeaafiaakeaacqGH8aapcqaHepaDcqGH% +aGpdaWgaaWcbaGaamOraiaad+gaaeqaaOGaeyypa0Zaaabqaeaaca% WGMbWaaSbaaSqaaiaadIhaaeqaaOGaam4yamaaBaaaleaacaWG4baa% beaaaeqabeqdcqGHris5aaaa!50D3!\[< \tau > _{Fo} = \sum {f_x c_x }\] average lifetime of Chl a fluorescence calculated from a multi-exponential model under Fm, Fo conditions  相似文献   

6.
Inhibition of erythrocyte transglutaminase by GTP   总被引:1,自引:0,他引:1  
The guanine nucleotides GTP, GDP and GMP inhibit the activity of erythrocyte transglutaminase (protein-glutamine:amine gamma-glutamyltransferase, EC 2.3.2.13) in a decreasing order of effectiveness. The inhibition is more apparent at low than at saturating levels of calcium ions and is not due to the chelation of Ca2+, but to an interference with the process of activation by the cation. This inhibition is likely to contribute to the latency of erythrocyte transglutaminase in physiological conditions.  相似文献   

7.
Flowers S  Biswas EE  Biswas SB 《Biochemistry》2003,42(7):1910-1921
DnaB helicase of E. coli unwinds duplex DNA in the replication fork using the energy of ATP hydrolysis. We have analyzed structural and conformational changes in the DnaB protein in various nucleotides and DNA bound intermediate states by fluorescence quenching analysis of intrinsic fluorescence of native tryptophan (Trp) residues in DnaB. Fluorescence quenching analysis indicated that Trp48 in domain alpha is in a hydrophobic environment and resistant to fluorescence quenchers such as potassium iodide (KI). In domain beta, Trp294 was found to be in a partially hydrophobic environment, whereas Trp456 in domain gamma appeared to be in the least hydrophobic environment. Binding of oligonucleotides to DnaB helicase resulted in a significant attenuation of the fluorescence quenching profile, indicating a change in conformation. ATPgammaS or ATP binding appeared to lead to a conformation in which Trp residues had a higher degree of solvent exposure and fluorescence quenching. However, the most dramatic increase of Trp fluorescence quenching was observed with ADP binding with a possible conformational relaxation. Site-specific Trp --> Cys mutants of DnaB helicase demonstrated that conformational change upon ADP binding could be attributed exclusively to a conformational transition in the alpha domain leading to an increase in the solvent exposure of Trp48. However, formation of DnaB.ATPgammaS.DNA ternary complex led to a conformation with a fluorescence quenching profile similar to that observed with DnaB alone. The DnaB.ADP.DNA ternary complex produced a quenching curve similar to that of DnaB.ADP complex pointing to a change in conformation due to ATP hydrolysis. There are at least four identifiable structural/conformational states of DnaB helicase that are likely important in the helicase activity. The noncatalytic alpha domain in the N-terminus appeared to undergo the most significant conformational changes during nucleotide binding and hydrolysis. This is the first reported elucidation of the putative role of domain alpha, which is essential for DNA helicase action. We have correlated these results with partial structural models of alpha, beta, and gamma domains  相似文献   

8.
Transglutaminases catalyze the cross-linking and amine incorporation of proteins, and are implicated in various biological phenomena. Previously, we found a high molecular mass transglutaminase-inhibitory substance produced by Streptomyces lavendulae Y-200 that appeared to be a melanin substance. Here, we report that synthetic tyrosine melanin inhibited various types of transglutaminases. Tyrosine melanin inhibited tissue-type transglutaminase in a competitive manner with a glutamine substrate, and also inhibited the cross-linking of casein catalyzed by a tissue-type transglutaminase. The melanized hemolymph of the silkworm and melanin solutions prepared from melanin precursors inhibited tissue-type transglutaminase. These results suggested that the melanin substances generally inhibit transglutaminases.  相似文献   

9.
10.
The structural regulation of the access of acrylamide molecules, as quenchers, to the buried tryptophans of a protein can be modelled by a simple gate concept. Such a gate, when open, allows transient exposure of the fluorophore to the quencher molecule in solution. We have previously shown that the observed viscosity dependence of acrylamide quenching process in ribonuclease T1 (RNAse T1) is not reconcilable with the gating mechanism. However, on that occasion, we neglected the effect of changes in the activity of the quencher molecule and the possible presence of static quenching. The experimental observation of a considerable contribution by static quenching and the realization that static quenching might produce dramatic effects in steady state measurements led us to reexamine the question. It is shown that in a gating model the static component can also influence the apparent dynamic quenching. In this paper, we present derived equations for the gated quenching mechanism including possible contributions from the static component. We also carefully remeasured the acrylamide quenching of RNAase T1 as a function of increasing glycerol concentration. Computer simulations were carried out to compare the experimental data set to the generalized model. We reach the conclusion that even the new, quite complex equations fail to predict the qualitative and quantitative features of the observed quenching experiments. We arrived at the conclusion that the fluorophore is never the target of the quencher molecules in solution.  相似文献   

11.
12.
We present a theoretical model to account for the quenching data of macromolecular fluorescence and phosphorescence when the accessibility to the quencher is gated by a dynamic mechanism coupled to the fluctuation of the macromolecular matrix. We show that the model currently in use to interpret gated quenching processes gives only approximate results in both qualitative and quantitative terms, and it can be regarded as a specific case of the presented model. We show that the gating dynamics affect both the apparent accessibility (alpha obs) and Ksv values obtained by the modified Stern-Volmer plot. The effect of gating on alpha obs and Ksv depends upon the relative rate of gating compared to the excited state lifetime. The model allows us to predict the effect of viscosity on quenching if it takes place by a gated mechanism. The prediction can and is, in this case, compared to the existing data on glycerol effects on acrylamide quenching of the tryptophan fluorescence in RNAse T1. The result shows that a simple gated model is not compatible with the observed quenching behavior.  相似文献   

13.
14.
The intrinsic fluorescence of two apo-photoproteins has been characterized and its concentration-dependent quenching by coelenterazine has been for the first time applied to determine the apparent dissociation constants for coelenterazine binding with apo-aequorin (1.2 ± 0.12 μM) and apo-obelin (0.2 ± 0.04 μM). Stopped-flow measurements of fluorescence quenching showed that coelenterazine binding is a millisecond-scale process, in contrast to the formation of an active photoprotein complex taking several hours. This finding evidently shows that the rate-limiting step of active photoprotein formation is the conversion of coelenterazine into its 2-hydroperoxy derivative.  相似文献   

15.
We report on the control of the emission from a fluorophore fixed on DNA using the methylcytosine-selective addition of an osmium-bipyridine complex. We have synthesized DNA modified by a microenvironment-sensitive fluorophore, 2-dimethylamino-6-acyl-naphthalene. The emission from the fluorophore tethered to a probe DNA was effectively quenched by a methylcytosine glycol-osmium-bipyridine triad, which was located in the immediate neighborhood of the fluorophore. The discrimination of the cytosine methylation status at a methylation hot spot in the p53 gene was also executed using a well-designed fluorescent DNA probe.  相似文献   

16.
SecA initiates protein translocation by interacting with ATP, preprotein, and the SecYEG membrane components. Under such conditions, it undergoes a conformational change characterized as membrane insertion, which is then followed by hydrolysis of ATP, enabling the release of the preprotein and deinsertion of SecA itself for the next cycle of reactions. Without ongoing translocation, the ATPase activity of SecA is kept very low. Previously, it was shown that the C-terminal 34-kDa domain of SecA interacts with the N-terminal 68-kDa ATPase domain to down-regulate the ATPase. Here, we show, using a deregulated SecA mutant, that the intrinsic ATPase activity is subject to dual inhibitory mechanisms. Thus, the proposed second ATP-binding domain down-regulates the ATPase activity executed by the primary ATPase domain. This regulation, within the N-terminal ATPase domain, operates independently of the C-terminal domain-mediated regulation. The absence of both the mechanisms resulted in a 50-fold elevation of translocation-uncoupled ATP hydrolysis.  相似文献   

17.
The intrinsic fluorescence of lauryl maltoside solubilized bovine heart cytochrome c oxidase has been determined to arise from tryptophan residues of the oxidase complex. The magnitude of the fluorescence is approximately 34% of that from n-acetyltryptophanamide (NATA). This level of fluorescence is consistent with an average heme to tryptophan distance of 30 A. The majority of the fluorescent tryptophan residues are in a hydrophobic environment as indicated by the fluorescence emission maximum at 328 nm and the differing effectiveness of the quenching agents: Cs+, I-, and acrylamide. Cesium was ineffective up to a concentration of 0.7 M, whereas quenching by the other surface quenching agent, iodide, was complex. Below 0.2 M, KI was ineffective whereas between 0.2 and 0.7 M 15% of the tryptophan fluorescence was found to be accessible to iodide. This pattern indicates that protein structural changes were induced by iodide and may be related to the chaotropic character of KI. Acrylamide was moderately effective as a quenching agent of the oxidase fluorescence with a Stern-Volmer constant of 2 M-1 compared with acrylamide quenching of NATA and the water-soluble enzyme aldolase having Stern-Volmer constants of 12 M-1 and 0.3 M-1, respectively. There was no effect of cytochrome c on the tryptophan emission intensity from cytochrome c oxidase under conditions where the two proteins form a tight, 1:1 complex, implying that the tryptophan residues near the cytochrome c binding site are already quenched by energy transfer to the homes of the oxidase. The lauryl maltoside concentration used to solubilize the enzyme did not affect the fluorescence of NATA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Mechanisms of fluorescence quenching of aromatic chromophores by water are reviewed. The mechanisms include polarity of chromophore environment, proton or electron transfer between the excited chromophore and water. A hypothesis is proposed that the quenching can be a result of chromophore-solvent hydrogen bond breaking in the excited state.  相似文献   

19.
Tissue transglutaminase (TG2) is a ubiquitous enzyme that cross-links glutamine residues with lysine residues, resulting in protein polymerization, cross-linking of dissimilar proteins, and incorporation of diamines and polyamines into proteins. It has not previously been known to have kinase activity. Recently, insulin-like growth factor-binding protein-3 (IGFBP-3) has been reported to be phosphorylated by breast cancer cell membranes. We purified the IGFBP-3 kinase activity from solubilized T47D breast cancer cell membranes using gel filtration, ion-exchange chromatography, and IGFBP-3 affinity chromatography. The fractions containing kinase activity were further purified by high pressure liquid chromatography and analyzed by tandem mass spectroscopy. TG2 was detected in fractions containing kinase activity. Antisera to TG2 and protein A-Sepharose were used to immunoprecipitate TG2 from membrane fractions. The immunoprecipitates retained IGFBP-3 kinase, whereas immunoprecipitation deleted kinase activity in the membrane supernatant. The inhibitors of TG2, cystamine and monodansyl cadaverine, abolished the ability of the T47D cell membrane preparation to phosphorylate IGFBP-3. Both TG2 purified from guinea pig liver and recombinant human TG2 expressed in insect cells were able to phosphorylate IGFBP-3. TG2 kinase activity was inhibited in a concentration-dependent fashion by calcium, which has previously been shown to be important for the cross-linking activity of TG2. These data provide compelling evidence that TG2 has intrinsic kinase activity, a function that has not previously been ascribed to TG2. Furthermore, we provide evidence that TG2 is a major component of the IGFBP-3 kinase activity present on breast cancer cell membranes.  相似文献   

20.
Transglutaminases form a unique family of cross-linking enzymes which may be interesting for pharmaceutical and technical purposes. Bacterial transglutaminase, differing from the eucaryotic counterparts in being independent from Ca2+ ions, is excreted by several Streptomyces species. Until now an endogenous factor regulating activated transglutaminase could not be detected. Here, we investigated whether an inhibitor of transglutaminase is excreted into the culture fluid of Streptomyces mobaraensis. We could demonstrate that heat-resistant inhibitory activity is produced after 24h of growth reaching a maximum after 72h. A two-step ion exchange chromatography purification procedure revealed co-elution of the heat-treated inhibitor with pro-transglutaminase. Experiments with wild-type and recombinant pro-transglutaminase confirmed that the precursor protein indeed inhibits the activity of the mature enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号