首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 830 毫秒
1.
Roque A  Ponte I  Suau P 《Biophysical journal》2007,93(6):2170-2177
We studied the secondary structure of the C-terminal domains of the histone H1 subtypes H1 degrees (C-H1 degrees ) and H1t (C-H1t) in the presence of macromolecular crowding agents (Ficoll 70 and PEG 6000) by IR spectroscopy. The carboxyl-terminal domain has little structure in aqueous solution but became extensively folded in the presence of crowding agents. In 30% PEG, C-H1 degrees contained 19% alpha-helix, 28% beta-sheet, 16% turns, and 31% open loops. Similar proportions were observed in 30% Ficoll 70 and for C-H1t in both crowding agents. The proportions of secondary structure motifs were comparable to those of the DNA-bound domain. Kratky plots of the small-angle x-ray scattering showed that in crowding agents the C-terminus had the compaction of a globular state. Progressive dissipation of the secondary structure and a linear increase in partial heat capacity with temperature together with increased binding of ANS indicated that the C-terminus is not cooperatively folded in crowded conditions. Native-like secondary structure and compactness in absence of folding cooperativity indicate that the C-terminus in crowding agents is in a molten globule state. Folding of the C-terminus in crowded conditions may increase the rate of the transition toward the DNA-bound state and facilitate H1 diffusion inside cell nuclei.  相似文献   

2.
The effects of four single macromolecular crowding agents, Ficoll 70, dextran 70, polyethylene glycol (PEG) 2000, and calf thymus DNA (CT DNA), and three mixed crowding agents containing both CT DNA and polysaccharide (or PEG 2000) on the refolding of guanidine hydrochloride-denatured rabbit muscle creatine kinase (MM-CK) have been examined by activity assay. When the total concentration of the mixed crowding agent is 100 g/l, in which the weight ratio of CT DNA to Ficoll 70 is 1:9, the refolding yield of MM-CK after refolding for 3 h under these conditions increases 23% compared with that in the presence of 10 g/l CT DNA, 18% compared with 100 g/l Ficoll 70, and 19% compared with that in the absence of crowding agents. A remarkable increase in the refolding yield of MM-CK by a mixed crowding agent containing CT DNA and dextran 70 (or PEG 2000) is also observed. Further folding kinetics analyses show that these three mixed crowding agents remarkably accelerate the refolding of MM-CK, compared with single crowding agents. Aggregation of MM-CK in the presence of any of the three mixed crowding agents is less serious than that in the presence of a single crowding agent at the same concentration but more serious than that in the absence of crowding agents. Both the refolding yield and the refolding rate of MM-CK in mixtures of these agents are increased relative to the individual agents by themselves, indicating that mixed macromolecular crowding agents are more favorable to MM-CK folding and can be used to reflect the physiological environment more accurately than single crowding agents.  相似文献   

3.
We have studied the effects of macromolecular crowding on protein folding kinetics by studying the oxidative refolding of hen lysozyme in the absence and presence of high concentrations of bovine serum albumin and Ficoll 70. The heterogeneity characteristic of the lysozyme refolding process is preserved under crowded conditions. This, together with the observation that the refolding intermediates that accumulate to significant levels are very similar in the absence and presence of Ficoll, suggests that crowding does not alter substantially the energetics of the protein folding reaction. However, the presence of high concentrations of macromolecules results in the acceleration of the fast track of the refolding process whereas the slow track is substantially retarded. The results can be explained by preferential excluded volume stabilization of compact states relative to more unfolded states, and suggest that, relative to dilute solutions, the rates of many protein folding processes are likely to be altered under conditions that more closely resemble the intracellular environment.  相似文献   

4.
Hancock R 《PloS one》2012,7(4):e36045
In metaphase chromosomes, chromatin is compacted to a concentration of several hundred mg/ml by mechanisms which remain elusive. Effects mediated by the ionic environment are considered most frequently because mono- and di-valent cations cause polynucleosome chains to form compact ~30-nm diameter fibres in vitro, but this conformation is not detected in chromosomes in situ. A further unconsidered factor is predicted to influence the compaction of chromosomes, namely the forces which arise from crowding by macromolecules in the surrounding cytoplasm whose measured concentration is 100-200 mg/ml. To mimic these conditions, chromosomes were released from mitotic CHO cells in solutions containing an inert volume-occupying macromolecule (8 kDa polyethylene glycol, 10.5 kDa dextran, or 70 kDa Ficoll) in 100 μM K-Hepes buffer, with contaminating cations at only low micromolar concentrations. Optical and electron microscopy showed that these chromosomes conserved their characteristic structure and compaction, and their volume varied inversely with the concentration of a crowding macromolecule. They showed a canonical nucleosomal structure and contained the characteristic proteins topoisomerase IIα and the condensin subunit SMC2. These observations, together with evidence that the cytoplasm is crowded in vivo, suggest that macromolecular crowding effects should be considered a significant and perhaps major factor in compacting chromosomes. This model may explain why ~30-nm fibres characteristic of cation-mediated compaction are not seen in chromosomes in situ. Considering that crowding by cytoplasmic macromolecules maintains the compaction of bacterial chromosomes and has been proposed to form the liquid crystalline chromosomes of dinoflagellates, a crowded environment may be an essential characteristic of all genomes.  相似文献   

5.
The biological cells and extracellular matrix exhibit a highly crowded environment, called as macromolecular crowding. Crowding significantly influences protein structure and may lead to its aggregation. In the present study, buffalo heart cystatin (BHC), after purification from buffalo heart tissue, has been used as a model protein for studying effect of macromolecular crowding in the presence of high concentrations of bovine serum albumin (BSA), poly‐ethylene glycol‐1000 (PEG‐1000), and poly‐ethylene glycol‐4000 (PEG‐4000). Cystatins are thiol protease inhibitors and found to be involved in various important physiological processes. Functional inactivation of BHC was observed upon crowding, which varied as a function of concentration and molecular weight of crowding agents as well as incubation time. Structural changes of BHC at tertiary and secondary level were detected with the help of fluorescence and CD spectroscopy. CD analysis showed changes of α‐helix to β‐sheet, which could be due to aggregation. The ANS‐fluorescence study suggested the unfolding and presence of some partially folded intermediates. Increase in ThT‐fluorescence and absorption of Congo red spectra with red shift, confirmed the amyloid type aggregation of BHC in the presence of various crowding agents. Finally, electron microscopy provided the physical evidence about the formation of amyloid fibrils. Results suggested that among the various crowding agents used, amyloidogenesis of BHC was maximal in case of BSA followed by PEG‐4000 and least for PEG‐1000. The present work makes an important contribution in crowding mediated protein aggregation, which can have implications of potential interest. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Proteins fold and function inside cells that are crowded with macromolecules. Here, we address the role of the resulting excluded volume effects by in vitro spectroscopic studies of Pseudomonas aeruginosa apoazurin stability (thermal and chemical perturbations) and folding kinetics (chemical perturbation) as a function of increasing levels of crowding agents dextran (sizes 20, 40, and 70 kDa) and Ficoll 70. We find that excluded volume theory derived by Minton quantitatively captures the experimental effects when crowding agents are modeled as arrays of rods. This finding demonstrates that synthetic crowding agents are useful for studies of excluded volume effects. Moreover, thermal and chemical perturbations result in free energy effects by the presence of crowding agents that are identical, which shows that the unfolded state is energetically the same regardless of method of unfolding. This also underscores the two-state approximation for apoazurin’s unfolding reaction and suggests that thermal and chemical unfolding experiments can be used in an interchangeable way. Finally, we observe increased folding speed and invariant unfolding speed for apoazurin in the presence of macromolecular crowding agents, a result that points to unfolded-state perturbations. Although the absolute magnitude of excluded volume effects on apoazurin is only on the order of 1–3 kJ/mol, differences of this scale may be biologically significant.  相似文献   

7.
Protein dynamics in cells may be different from those in dilute solutions in vitro, because the environment in cells is highly concentrated with other macromolecules. This volume exclusion because of macromolecular crowding is predicted to affect both equilibrium and kinetic processes involving protein conformational changes. To quantify macromolecular crowding effects on protein folding mechanisms, we investigated the folding energy landscape of an α/β protein, apoflavodoxin, in the presence of inert macromolecular crowding agents, using in silico and in vitro approaches. By means of coarse-grained molecular simulations and topology-based potential interactions, we probed the effects of increased volume fractions of crowding agents (ϕc) as well as of crowding agent geometry (sphere or spherocylinder) at high ϕc. Parallel kinetic folding experiments with purified Desulfovibro desulfuricans apoflavodoxin in vitro were performed in the presence of Ficoll (sphere) and Dextran (spherocylinder) synthetic crowding agents. In conclusion, we identified the in silico crowding conditions that best enhance protein stability, and discovered that upon manipulation of the crowding conditions, folding routes experiencing topological frustrations can be either enhanced or relieved. Our test-tube experiments confirmed that apoflavodoxin''s time-resolved folding path is modulated by crowding agent geometry. Macromolecular crowding effects may be a tool for the manipulation of protein-folding and function in living cells.  相似文献   

8.
Analysis of the macromolecular crowding effects in polymer solutions show that the excluded volume effect is not the only factor affecting the behavior of biomolecules in a crowded environment. The observed inconsistencies are commonly explained by the so-called soft interactions, such as electrostatic, hydrophobic, and van der Waals interactions, between the crowding agent and the protein, in addition to the hard nonspecific steric interactions. We suggest that the changes in the solvent properties of aqueous media induced by the crowding agents may be the root of these “soft” interactions. To check this hypothesis, the solvatochromic comparison method was used to determine the solvent dipolarity/polarizability, hydrogen-bond donor acidity, and hydrogen-bond acceptor basicity of aqueous solutions of different polymers (dextran, poly(ethylene glycol), Ficoll, Ucon, and polyvinylpyrrolidone) with the polymer concentration up to 40% typically used as crowding agents. Polymer-induced changes in these features were found to be polymer type and concentration specific, and, in case of polyethylene glycol (PEG), molecular mass specific. Similarly sized polymers PEG and Ucon producing different changes in the solvent properties of water in their solutions induced morphologically different α-synuclein aggregates. It is shown that the crowding effects of some polymers on protein refolding and stability reported in the literature can be quantitatively described in terms of the established solvent features of the media in these polymers solutions. These results indicate that the crowding agents do induce changes in solvent properties of aqueous media in crowded environment. Therefore, these changes should be taken into account for crowding effect analysis.  相似文献   

9.
Folding of outer membrane proteins (OMPs) has been studied extensively in vitro. However, most of these studies have been conducted in dilute buffer solution, which is different from the crowded environment in the cell periplasm, where the folding and membrane insertion of OMPs actually occur. Using OmpA and OmpT as model proteins and Ficoll 70 as the crowding agent, here we investigated the effect of the macromolecular crowding condition on OMP membrane insertion. We found that the presence of Ficoll 70 significantly slowed down the rate of membrane insertion of OmpA while had little effect on those of OmpT. To investigate if the soluble domain of OmpA slowed down membrane insertion in the presence of the crowding agent, we created a truncated OmpA construct that contains only the transmembrane domain (OmpA171). In the absence of crowding agent, OmpA171 refolded at a similar rate as OmpA, although with decreased efficiency. However, under the crowding condition, OmpA171 refolded significantly faster than OmpA. Our results suggest that the periplasmic domain slows down the rate, while improves the efficiency, of OmpA folding and membrane insertion under the crowding condition. Such an effect was not obvious when refolding was studied in buffer solution in the absence of crowding.  相似文献   

10.
Proteins fold and function inside cells that are crowded with macromolecules. Here, we address the role of the resulting excluded volume effects by in vitro spectroscopic studies of Pseudomonas aeruginosa apoazurin stability (thermal and chemical perturbations) and folding kinetics (chemical perturbation) as a function of increasing levels of crowding agents dextran (sizes 20, 40, and 70 kDa) and Ficoll 70. We find that excluded volume theory derived by Minton quantitatively captures the experimental effects when crowding agents are modeled as arrays of rods. This finding demonstrates that synthetic crowding agents are useful for studies of excluded volume effects. Moreover, thermal and chemical perturbations result in free energy effects by the presence of crowding agents that are identical, which shows that the unfolded state is energetically the same regardless of method of unfolding. This also underscores the two-state approximation for apoazurin’s unfolding reaction and suggests that thermal and chemical unfolding experiments can be used in an interchangeable way. Finally, we observe increased folding speed and invariant unfolding speed for apoazurin in the presence of macromolecular crowding agents, a result that points to unfolded-state perturbations. Although the absolute magnitude of excluded volume effects on apoazurin is only on the order of 1–3 kJ/mol, differences of this scale may be biologically significant.  相似文献   

11.
Effects of macromolecular crowding on protein folding and aggregation   总被引:18,自引:0,他引:18       下载免费PDF全文
We have studied the effects of polysaccharide and protein crowding agents on the refolding of oxidized and reduced hen lysozyme in order to test the prediction that association constants of interacting macromolecules in living cells are greatly increased by macromolecular crowding relative to their values in dilute solutions. We demonstrate that whereas refolding of oxidized lysozyme is hardly affected by crowding, correct refolding of the reduced protein is essentially abolished due to aggregation at high concentrations of crowding agents. The results show that the protein folding catalyst protein disulfide isomerase is particularly effective in preventing lysozyme aggregation under crowded conditions, suggesting that crowding enhances its chaperone activity. Our findings suggest that the effects of macromolecular crowding could have major implications for our understanding of how protein folding occurs inside cells.  相似文献   

12.
The folding of protein, an important process for protein to fulfill normal functions, takes place in crowded physiological environments. α-Lactalbumin, as a model system for protein-folding studies, has been used extensively because it can form stable molten globule states under a range of conditions. Here we report that the crowding agents Ficoll 70, dextran 70, and polyethylene glycol (PEG) 2000 have different effects on the structural stability of human α-lactalbumin (HLA) represented by the transition to a molten globule state: dextran 70 dramatically enhances the thermal stability of Ca(2+)-depleted HLA (apo-HLA) and Ficoll 70 enhances the thermal stability of apo-HLA to some extent, while PEG 2000 significantly decreases the thermal stability of apo-HLA. Ficoll 70 and dextran 70 have no obvious effects on trypsin degradation of apo-HLA but PEG 2000 accelerates apo-HLA degradation by trypsin and destabilizes the native conformation of apo-HLA. Furthermore, no interaction is observed between apo-HLA and Ficoll 70 or dextran 70, but a weak, non-specific interaction between the apo form of the protein and PEG 2000 is detected, and such a weak, non-specific interaction could overcome the excluded-volume effect of PEG 2000. Our data are consistent with the results of protein stability studies in cells and suggest that stabilizing excluded-volume effects of crowding agents can be ameliorated by non-specific interactions between proteins and crowders.  相似文献   

13.
Environmental variables can exert significant influences on the folding stability of a protein, and elucidating these influences provides insight on the determinants of protein stability. Here, experimental data on the stability of FKBP12 are reported for the effects of three environmental variables: pH, salt, and macromolecular crowding. In the pH range of 5-9, contribution to the pH dependence of the unfolding free energy from residual charge-charge interactions in the unfolded state was found to be negligible. The negligible contribution was attributed to the lack of sequentially nearest neighboring charged residues around groups that titrate in the pH range. KCl lowered the stability of FKBP12 and the E31Q/D32N double mutant at small salt concentrations but raised stability after approximately 0.5 M salt. Such a turnover behavior was accounted for by the balance of two opposing types of protein-salt interactions: the Debye-Hückel type, modeling the response of the ions to protein charges, favors the unfolded state while the Kirkwood type, accounting for the disadvantage of the ions moving toward the low-dielectric protein cavity from the bulk solvent, disfavors the unfolded state. Ficoll 70 as a crowding agent was found to have a modest effect on protein stability, in qualitative agreement with a simple model suggesting that the folded and unfolded states are nearly equally adversely affected by macromolecular crowding. For any environmental variable, it is the balance of its effects on the folded and unfolded states that determines the outcome on the folding stability.  相似文献   

14.
The self-association equilibrium of a tracer protein, apomyoglobin (apoMb), in highly concentrated crowded solutions of ribonuclease A (RNase A) and human serum albumin (HSA), has been studied as a model system of protein interactions that occur in crowded macromolecular environments. The rotational diffusion of the tracer protein labeled with two different fluorescent dyes, 8-anilinonaphthalene-1-sulfonate and fluorescein isothiocyanate, was successfully recorded as a function of the two crowder concentrations in the 50-200 mg/mL range, using picosecond-resolved fluorescence anisotropy methods. It was found that apoMb molecules self-associate at high RNase A concentration to yield a flexible dimer. The apparent dimerization constant, which increases with RNase A concentration, could also be estimated from the fractional contribution of monomeric and dimeric species to the total fluorescence anisotropy of the samples. In contrast, an equivalent mass concentration of HSA does not result in tracer dimerization. This different effect of RNase A and HSA is much larger than that predicted from simple models based only on the free volume available to apoMb, indicating that additional, nonspecific interactions between tracer and crowder should come into play. The time-resolved fluorescence polarization methods described here are expected to be of general applicability to the detection and quantification of crowding effects in a variety of macromolecules of biological relevance.  相似文献   

15.
Self-association of polynucleosome chains by macromolecular crowding   总被引:1,自引:1,他引:0  
The crowding of macromolecules in the cell nucleus, where their concentration is in the range of 100 mg/ml, is predicted to result in strong entropic forces between them. Here the effects of crowding on polynucleosome chains in vitro were studied to evaluate if these forces could contribute to the packing of chromatin in the nucleus in vivo. Soluble polynucleosomes approximately 20 nucleosomes in length formed fast-sedimenting complexes in the presence of inert, volume-occupying agents poly(ethylene glycol) (PEG) or dextran. This self-association was reversible and consistent with the effect of macromolecular crowding. In the presence of these crowding agents, polynucleosomes formed large assemblies as seen by fluorescence microscopy after labelling DNA with the fluorescent stain DAPI, and formed rods and sheets at a higher concentration of crowding agent. Self-association caused by crowding does not require exogenous cations. Single, approximately 800 nucleosome-long chains prepared in 100 muM Hepes buffer with no added cations, labelled with the fluorescent DNA stain YOYO-1, and spread on a polylysine-coated surface formed compact 3-D clusters in the presence of PEG or dextran. This reversible packing of polynucleosome chains by crowding may help to understand their compact conformations in the nucleus. These results, together with the known collapse of linear polymers in crowded milieux, suggest that entropic forces due to crowding, which have not been considered previously, may be an important factor in the packing of nucleosome chains in the nucleus.  相似文献   

16.
Proteins have evolved to fold and function within a cellular environment that is characterized by high macromolecular content. The earliest step of protein folding represents intrachain contact formation of amino acid residues within an unfolded polypeptide chain. It has been proposed that macromolecular crowding can have significant effects on rates and equilibria of biomolecular processes. However, the kinetic consequences on intrachain diffusion of polypeptides have not been tested experimentally, yet. Here, we demonstrate that selective fluorescence quenching of the oxazine fluorophore MR121 by the amino acid tryptophan (Trp) in combination with fast fluorescence correlation spectroscopy (FCS) can be used to monitor end-to-end contact formation rates of unfolded polypeptide chains. MR121 and Trp were incorporated at the terminal ends of polypeptides consisting of repetitive units of glycine (G) and serine (S) residues. End-to-end contact formation and dissociation result in "off" and "on" switching of MR121 fluorescence and underlying kinetics can be revealed in FCS experiments with nanosecond time resolution. We revisit previous experimental studies concerning the dependence of end-to-end contact formation rates on polypeptide chain length, showing that kinetics can be described by Gaussian chain theory. We further investigate effects of solvent viscosity and temperature on contact formation rates demonstrating that intrachain diffusion represents a purely diffusive, entropy-controlled process. Finally, we study the influence of macromolecular crowding on polypeptide chain dynamics. The data presented demonstrate that intrachain diffusion is fast in spite of hindered diffusion caused by repulsive interactions with macromolecules. Findings can be explained by effects of excluded volume reducing chain entropy and therefore accelerating the loop search process. Our results suggest that within a cellular environment the early formation of structural elements in unfolded proteins can still proceed quite efficiently in spite of hindered diffusion caused by high macromolecular content.  相似文献   

17.
The effects of macromolecular crowding were tested on several reactions catalyzed by T4 RNA ligase. The rate of cyclization of oligoriboadenylates was stimulated up to 10-fold by relatively high concentrations of several polymers (polyethylene glycol (PEG) 8000 or 20,000; bovine plasma albumin; Ficoll 70). In addition, higher concentrations of PEG 8000 or PEG 20,000 allowed the novel formation of large linear products from the oligoriboadenylates. Also stimulated by high concentrations of PEG 8000 were the rate at which T4 RNA ligase joined p(dT)10 to oligoriboadenylates and the rate at which the enzyme activated p(dT)n by transfer of an adenylyl moiety from ATP to the oligonucleotides. These results with T4 RNA ligase are compared to earlier studies on the effects of crowding on DNA ligases.  相似文献   

18.
Folding mechanisms of functional RNAs under idealized in vitro conditions of dilute solution and high ionic strength have been well studied. Comparatively little is known, however, about mechanisms for folding of RNA in vivo where Mg2+ ion concentrations are low, K+ concentrations are modest, and concentrations of macromolecular crowders and low-molecular-weight cosolutes are high. Herein, we apply a combination of biophysical and structure mapping techniques to tRNA to elucidate thermodynamic and functional principles that govern RNA folding under in vivo–like conditions. We show by thermal denaturation and SHAPE studies that tRNA folding cooperativity increases in physiologically low concentrations of Mg2+ (0.5–2 mM) and K+ (140 mM) if the solution is supplemented with physiological amounts (∼20%) of a water-soluble neutral macromolecular crowding agent such as PEG or dextran. Low-molecular-weight cosolutes show varying effects on tRNA folding cooperativity, increasing or decreasing it based on the identity of the cosolute. For those additives that increase folding cooperativity, the gain is manifested in sharpened two-state-like folding transitions for full-length tRNA over its secondary structural elements. Temperature-dependent SHAPE experiments in the absence and presence of crowders and cosolutes reveal extent of cooperative folding of tRNA on a nucleotide basis and are consistent with the melting studies. Mechanistically, crowding agents appear to promote cooperativity by stabilizing tertiary structure, while those low molecular cosolutes that promote cooperativity stabilize tertiary structure and/or destabilize secondary structure. Cooperative folding of functional RNA under physiological-like conditions parallels the behavior of many proteins and has implications for cellular RNA folding kinetics and evolution.  相似文献   

19.
In this study, we quantitatively measured the effects of the macromolecular crowding agents, polyethylene glycol 2000 (PEG 2000), dextran 70, and calf thymus DNA (CT DNA), on the refolding and aggregation of recombinant human brain-type creatine kinase (rHBCK) denatured by guanidine hydrochloride (GdnHCl). The results showed that there is more aggregation in the presence of either a single crowding agent or in a mixture of crowding agents than in the absence of crowding agents, especially in the presence of a mixture containing CT DNA and PEG 2000 (or dextran 70). In the presence of high concentrations of PEG 2000 (100 g/L), dextran 70 (100 g/L), and CT DNA (15 g/L), the refolding yield remarkably decreased from 70% to 20%, 52% and 57%, respectively. A remarkable decrease in the refolding yield and rate with mixed crowding agent containing CT DNA and PEG 2000 (or dextran 70) was also observed. In comparison to refolding in the presence of 100 g/L PEG 2000, the refolding yields and rates improved in the presence of a mixture of PEG 2000 and dextran 70. We speculate that the crowding agents can favor both correct folding and misfolding/aggregation of denatured-rHBCK. Though it is not known what combination of crowding agents most accurately reflects the physiological environment within a cell, we believe our study could contribute to the understanding of protein folding and the factors that contribute to proper conformation and function in the intracellular environment.  相似文献   

20.
ZJ Tan  SJ Chen 《Biophysical journal》2012,103(4):827-836
RNAs are negatively charged molecules that reside in cellular environments with macromolecular crowding. Macromolecular confinement can influence the ion effects in RNA folding. In this work, using the recently developed tightly bound ion model for ion fluctuation and correlation, we investigate the effect of confinement on ion-mediated RNA structural collapse for a simple model system. We find that for both Na(+) and Mg(2+), the ion efficiencies in mediating structural collapse/folding are significantly enhanced by the structural confinement. This enhancement of ion efficiency is attributed to the decreased electrostatic free-energy difference between the compact conformation ensemble and the (restricted) extended conformation ensemble due to the spatial restriction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号