首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 558 毫秒
1.
Conservation management of wild fish may include fish health management in sympatric populations of domesticated fish in aquaculture. We developed a mathematical model for the population dynamics of parasitic sea lice (Lepeophtheirus salmonis) on domesticated populations of Atlantic salmon (Salmo salar) in the Broughton Archipelago region of British Columbia. The model was fit to a seven-year dataset of monthly sea louse counts on farms in the area to estimate population growth rates in relation to abiotic factors (temperature and salinity), local host density (measured as cohort surface area), and the use of a parasiticide, emamectin benzoate, on farms. We then used the model to evaluate management scenarios in relation to policy guidelines that seek to keep motile louse abundance below an average three per farmed salmon during the March–June juvenile wild Pacific salmon (Oncorhynchus spp.) migration. Abiotic factors mediated the duration of effectiveness of parasiticide treatments, and results suggest treatment of farmed salmon conducted in January or early February minimized average louse abundance per farmed salmon during the juvenile wild salmon migration. Adapting the management of parasites on farmed salmon according to migrations of wild salmon may therefore provide a precautionary approach to conserving wild salmon populations in salmon farming regions.  相似文献   

2.
Pink salmon, Oncorhynchus gorbuscha, are the most abundant wild salmon species and are thought of as an indicator of ecosystem health. The salmon louse, Lepeophtheirus salmonis, is endemic to pink salmon habitat but these ectoparasites have been implicated in reducing local pink salmon populations in the Broughton Archipelago, British Columbia. This allegation arose largely because juvenile pink salmon migrate past commercial open net salmon farms, which are known to incubate the salmon louse. Juvenile pink salmon are thought to be especially sensitive to this ectoparasite because they enter the sea at such a small size (approx. 0.2 g). Here, we describe how 'no effect' thresholds for salmon louse sublethal impacts on juvenile pink salmon were determined using physiological principles. These data were accepted by environmental managers and are being used to minimize the impact of salmon aquaculture on wild pink salmon populations.  相似文献   

3.
Cleaning interactions have been described in a wide range of fish species and other taxa. We observed a novel cleaning behaviour during a study of the transmission dynamics of sea lice (Lepeophtheirus salmonis) between juvenile pink salmon (Oncorhynchus gorbuscha) and threespine sticklebacks (Gasterosteus aculeatus) in the Broughton Archipelago, British Columbia, Canada. Experiments showed that sticklebacks significantly reduced the number of sea lice on individual juvenile salmon. Adult female lice were preferentially consumed by sticklebacks, and gravid female lice also experienced egg string cropping. Overall, 76% of gravid female lice experienced either consumption, egg string cropping, or both by sticklebacks. This preference by sticklebacks for female parasites may stem from female lice being larger than males and the added nutritional value of egg strings on gravid females. Cleaning by sticklebacks can potentially have an impact on sea louse populations on wild juvenile salmon.  相似文献   

4.
Marine salmon farming has been correlated with parasitic sea lice infestations and concurrent declines of wild salmonids. Here, we report a quantitative analysis of how a single salmon farm altered the natural transmission dynamics of sea lice to juvenile Pacific salmon. We studied infections of sea lice (Lepeophtheirus salmonis and Caligus clemensi) on juvenile pink salmon (Oncorhynchus gorbuscha) and chum salmon (Oncorhynchus keta) as they passed an isolated salmon farm during their seaward migration down two long and narrow corridors. Our calculations suggest the infection pressure imposed by the farm was four orders of magnitude greater than ambient levels, resulting in a maximum infection pressure near the farm that was 73 times greater than ambient levels and exceeded ambient levels for 30 km along the two wild salmon migration corridors. The farm-produced cohort of lice parasitizing the wild juvenile hosts reached reproductive maturity and produced a second generation of lice that re-infected the juvenile salmon. This raises the infection pressure from the farm by an additional order of magnitude, with a composite infection pressure that exceeds ambient levels for 75 km of the two migration routes. Amplified sea lice infestations due to salmon farms are a potential limiting factor to wild salmonid conservation.  相似文献   

5.
The ecological impact of parasite transmission from fish farms is probably mediated by the migration of wild fishes, which determines the period of exposure to parasites. For Pacific salmon and the parasitic sea louse, Lepeophtheirus salmonis, analysis of the exposure period may resolve conflicting observations of epizootic mortality in field studies and parasite rejection in experiments. This is because exposure periods can differ by 2–3 orders of magnitude, ranging from months in the field to hours in experiments. We developed a mathematical model of salmon–louse population dynamics, parametrized by a study that monitored naturally infected juvenile salmon held in ocean enclosures. Analysis of replicated trials indicates that lice suffer high mortality, particularly during pre-adult stages. The model suggests louse populations rapidly decline following brief exposure of juvenile salmon, similar to laboratory study designs and data. However, when the exposure period lasts for several weeks, as occurs when juvenile salmon migrate past salmon farms, the model predicts that lice accumulate to abundances that can elevate salmon mortality and depress salmon populations. The duration of parasite exposure is probably critical to salmon–louse population dynamics, and should therefore be accommodated in coastal planning and management where fish farms are situated on wild fish migration routes.  相似文献   

6.
Animal migrations can affect disease dynamics. One consequence of migration common to marine fish and invertebrates is migratory allopatry-a period of spatial separation between adult and juvenile hosts, which is caused by host migration and which prevents parasite transmission from adult to juvenile hosts. We studied this characteristic for sea lice (Lepeophtheirus salmonis and Caligus clemensi) and pink salmon (Oncorhynchus gorbuscha) from one of the Canada's largest salmon stocks. Migratory allopatry protects juvenile salmon from L. salmonis for two to three months of early marine life (2-3% prevalence). In contrast, host diversity facilitates access for C. clemensi to juvenile salmon (8-20% prevalence) but infections appear ephemeral. Aquaculture can augment host abundance and diversity and increase parasite exposure of wild juvenile fish. An empirically parametrized model shows high sensitivity of salmon populations to increased L. salmonis exposure, predicting population collapse at one to five motile L. salmonis per juvenile pink salmon. These results characterize parasite threats of salmon aquaculture to wild salmon populations and show how host migration and diversity are important factors affecting parasite transmission in the oceans.  相似文献   

7.
Interannual variations in distribution, size, indices of feeding and condition of juvenile Bristol Bay sockeye salmon Oncorhynchus nerka collected in August to September (2000–2003) during Bering–Aleutian Salmon International Surveys were examined to test possible mechanisms influencing their early marine growth and survival. Juvenile sockeye salmon were mainly distributed within the southern region of the eastern Bering Sea, south of 57°0' N during 2000 and 2001 and farther offshore, south of 58°0' N during 2002 and 2003. In general, juvenile sockeye salmon were significantly larger ( P < 0·05) and had significantly higher indices of condition ( P < 0·05) during 2002 and 2003 than during 2000 and 2001. The feeding index was generally higher for age 1.0 year sockeye salmon than age 2.0 year during all years. Among-year comparisons suggested that Pacific sand lance Ammodytes hexapterus were important components of the juvenile sockeye salmon diet during 2000 and 2001 (20 to 50% of the mean wet mass) and age 0 year walleye pollock Theragra chalcogramma were important components during 2002 and 2003 (50 to 60% of the mean wet mass). Warmer sea temperatures during spring and summer of 2002 and 2003 probably increased productivity on the eastern Bering Sea shelf, enhancing juvenile sockeye salmon growth.  相似文献   

8.
The metabolic response of juvenile coho salmon Oncorhynchus kisutch to different salinities was examined, using whole-animal oxygen consumption rates and gill Na+, K+-ATPase activities as indicators of osmoregulatory energetics. Coho salmon smolts were acclimated to fresh water (FW), isosmotic salinity (ISO, 10‰) and sea water (SW, 28‰) and were sampled for up to 6 weeks for plasma levels of cortisol, glucose and ions (Na+, K+, Cl), gill Na+, K+-ATPase activity and oxygen consumption rates. Following an initial adjustment period, plasma constituents in SW fish returned to near-FW values, indicating that the fish were acclimated to SW by day 21. Gill Na+, K+-ATPase activities on days 21 and 42 were lowest in ISO, higher in FW and highest in SW. This result is consistent with the idea that less energy would be required to maintain ion balance in an isosmotic environment, where the ionic gradients between extracellular fluid and water would be minimal. Oxygen consumption rates of swimming fish (1 body length s−1), however, did not differ significantly between the three test salinities after 6 weeks. The results of this study suggest that the metabolic response of juvenile salmonids to changes in salinity is dependent on life-history stage (e.g. fry v . smolt), and that oxygen consumption rates do not necessarily reflect osmoregulatory costs.  相似文献   

9.
盐度对大麻哈鱼幼鱼血液生化指标及肝组织的影响   总被引:1,自引:0,他引:1  
模拟大麻哈鱼幼鱼降海洄游水域环境盐度,设0(淡水对照)、5、10、15、20共5个盐度组,以体质量(26.57±6.32)g、全长(14.44±1.05)cm幼鱼分别进行130 d饲养试验,通过血液生化指标分析及肝组织观察,研究了大麻哈鱼降海期对不同盐度适应过程的生理变化.结果表明: 血清渗透压和血清Na+、Cl-变化趋势与水体盐度变化基本一致.高盐度(15、20)组血清Na+、Cl-、Mg2+含量与低盐度(5)组和淡水组差异显著;各盐度处理组血清K+含量均显著低于淡水组.盐度10组的血糖浓度显著高于盐度5和20组;各盐度处理组总胆汁酸与淡水组差异显著;幼鱼血清总蛋白(TP)、白蛋白(ALB)、球蛋白(GLB)含量随盐度的升高总体呈下降趋势,其中淡水组TP和GLB含量显著高于盐度15和20组.淡水组血清谷丙转氨酶(ALT)、谷草转氨酶(AST)与高盐度组差异显著.低盐度(盐度0、5)下试验幼鱼肝细胞有部分破裂现象,肝组织空泡化严重.各组试验鱼生长和成活率无明显差异,生理生化指标显示大麻哈鱼幼鱼降海期适应盐度以10~20为宜.  相似文献   

10.
We review studies of interactions between hatchery and wild Pacific salmon in the Russian Far East. This includes the role of hatchery practices that result in premature migration to the sea and increased mortality, and data on feeding and territorial competition between juveniles of hatchery and wild origin. In the course of downstream migration many juvenile hatchery salmon are eliminated by wild salmon predation. During the marine period, Japanese hatchery chum salmon (Oncorhynchus keta) distribution overlaps the distribution of Russian wild salmon. Consequently, replacement of wild populations by hatchery fishes, as a result of abundant juvenile hatchery releases combined with extensive poaching in spawning grounds, is apparent in some Russian rivers. Interactions between the populations occur in all habitats. The importance of conservation of wild salmon populations requires a more detailed study of the consequences of interactions between natural and artificially reared fishes.  相似文献   

11.
Parasites seldom have predators but often fall victim to those of their hosts. How parasites respond to host predation can have important consequences for both hosts and parasites, though empirical investigations are rare. The exposure of wild juvenile salmon to sea lice (Lepeophtheirus salmonis) from salmon farms allowed us to study a novel ecological interaction: the response of sea lice to predation on their juvenile pink and chum salmon hosts by two salmonid predators-coho smolts and cut-throat trout. In approximately 70% of trials in which a predator consumed a parasitized prey, lice escaped predation by swimming or moving directly onto the predator. This trophic transmission is strongly male biased, probably because behaviour and morphology constrain female movement and transmission. These findings highlight the potential for sea lice to be transmitted up marine food webs in areas of intensive salmon aquaculture, with implications for louse population dynamics and predatory salmonid health.  相似文献   

12.
Estimates of instantaneous mortality rate of mark-recaptured chum salmon Oncorhynchus keta juveniles in coastal waters of the Sea of Japan ranged from 0·033 to 0·268 day−1 in the 14–43 days after release. High mortality rate may have been caused by size-selective mortality or poor ability to adapt to the coastal environment inhabited by chum salmon juveniles soon after release. The results indicated that large-scale mark-recapture experiments are useful for estimating mortality during the early sea life that is considered to be a critical period for Pacific salmon.  相似文献   

13.
14.
The salmon louse, Lepeophtheirus salmonis, is a crustacean ectoparasite of salmonid fish. At present, sea louse control on salmon farms relies heavily upon chemical treatments. Drug efflux transport, mediated by ABC transporters such as P-glycoprotein (Pgp), represents a major mechanism for drug resistance in parasites. We report here the molecular cloning of a new Pgp from the salmon louse, called SL-PGY1. A partial Pgp sequence was obtained by searching sea louse ESTs, and extended by rapid amplification of cDNA ends (RACE). The open reading frame of SL-PGY1 encodes a protein of 1438 amino acids that possesses typical structural traits of P-glycoproteins, and shows a high degree of sequence homology to invertebrate and vertebrate P-glycoproteins. In the absence of drug exposure, SL-PGY1 mRNA expression levels did not differ between a drug-susceptible strain of L. salmonis and a strain showing a ~7-fold decrease in sensitivity against emamectin benzoate, the active component of the in-feed sea louse treatment SLICE (Merck Animal Health). Aqueous exposure of the hyposensitive salmon louse strain to emamectin benzoate (24h, 410 μg/L) provoked a 2.9-fold upregulation of SL-PGY1. Adult male lice of both strains showed a greater abundance of SL-PGY1 mRNA than adult females.  相似文献   

15.
Effective disease management can benefit from mathematical models that identify drivers of epidemiological change and guide decision-making. This is well illustrated in the host–parasite system of sea lice and salmon, which has been modelled extensively due to the economic costs associated with sea louse infections on salmon farms and the conservation concerns associated with sea louse infections on wild salmon. Consequently, a rich modelling literature devoted to sea louse and salmon epidemiology has been developed. We provide a synthesis of the mathematical and statistical models that have been used to study the epidemiology of sea lice and salmon. These studies span both conceptual and tactical models to quantify the effects of infections on host populations and communities, describe and predict patterns of transmission and dispersal, and guide evidence-based management of wild and farmed salmon. As aquaculture production continues to increase, advances made in modelling sea louse and salmon epidemiology should inform the sustainable management of marine resources.  相似文献   

16.
Concurrent, distribution-wide abundance declines of some Pacific salmon species, including Chinook salmon (Oncorhynchus tshawytscha), highlights the need to understand how vulnerability at different life stages to climate stressors affects population dynamics and fisheries sustainability. Yukon River Chinook salmon stocks are among the largest subarctic populations, near the northernmost extent of the species range. Existing research suggests that Yukon River Chinook salmon population dynamics are largely driven by factors occurring between the adult spawner life stage and their offspring's first summer at sea (second year post-hatching). However, specific mechanisms sustaining chronic poor productivity are unknown, and there is a tremendous sense of urgency to understand causes, as declines of these stocks have taken a serious toll on commercial, recreational, and indigenous subsistence fisheries. Therefore, we leveraged multiple existing datasets spanning parent and juvenile stages of life history in freshwater and marine habitats. We analyzed environmental data in association with the production of offspring that survive to the marine juvenile stage (juveniles per spawner). These analyses suggest more than 45% of the variability in the production of juvenile Chinook salmon is associated with river temperatures or water discharge levels during the parent spawning migration. Over the past two decades, parents that experienced warmer water temperatures and lower discharge in the mainstem Yukon River produced fewer juveniles per spawning adult. We propose the adult spawner life stage as a critical period regulating population dynamics. We also propose a conceptual model that can explain associations between population dynamics and climate stressors using independent data focused on marine nutrition and freshwater heat stress. It is sobering to consider that some of the northernmost Pacific salmon habitats may already be unfavorable to these cold-water species. Our findings have immediate implications, given the common assumption that northern ranges of Pacific salmon offer refugia from climate stressors.  相似文献   

17.
黑龙江秋大麻哈鱼耳石形态发育研究   总被引:2,自引:0,他引:2  
对进入中国黑龙江的秋大麻哈鱼生殖群体进行人工繁育, 观察不同发育阶段和回归成体的耳石形态及其结构变化。结果表明:秋大麻哈鱼胚胎、胚后仔稚鱼、幼鱼和二龄鱼的矢耳石随个体生长发育,其大小在不断增长, 轮廓和表面形态结构也在发生演变, 逐渐趋似于回归成体的耳石形态。秋大麻哈鱼回归生殖群体的不同年龄和雌雄个体间矢耳石、微耳石形态基本一致。矢耳石形似梨形, 大小约为3 mm×5 mm×1 mm, 重量约为9 mg, 光镜下可见耳石日轮和年轮结构。日轮形成在胚胎发眼后约5日, 采用人工标记方法证实了生长轮的日周期特性。二龄鱼耳石已出现边缘生长区, 形成年轮。矢耳石增长与鱼体叉长生长显著相关(SL=21.574 OL-7.005,R2=0.9926)。    相似文献   

18.
Throughout its native North Pacific, the chinook salmon, Oncorhynchus tshawytscha (Walbaum), exists as twolife-history types that aredistinguished by the age at which juvenile salmon migrate to sea as smolts. 'Stream-type' chinook migrate seaward after I or more years of feeding in fresh water, whereas 'ocean-type' fish migrate to sea as newly emerged fry or after 2–3 months in fresh water. Stream-type chinook predominate in populations distant from the sea south of 56° N, and in both inland and coastal populations north of this point. By contrast, ocean-type chinook predominate in coastal populations south of 56° N, but are rare in populations in more northerly latitudes. Stream-type populations are associated with areas of low 'growth opportunity' (as measured by temperature and photoperiod regimes) and/or areas distant from the sea compared to ocean-type. Geographic variability in juvenile life history is suggested to result, in part, from environmental modulation of smolting timing via differences in growth opportunity among geo-graphic areas. In addition, differences in migration distance and temperature regime may result in selection for different sizes at migration among populations which, through differences in growth opportunity, might promote geographic variability in age at seaward migration.  相似文献   

19.
In the 1990s, an extensive body of data was gathered on the size of the Oncorhynchus gorbuschapink salmon populations of the Sea of Okhotsk at all the main developmental stages. A significant increase in numbers was found for juvenile pink salmon migrating into the offshore regions of the Sea of Okhotsk and the Pacific waters around the Kurils: from 250–450 million in 1990–1991 to 807–1570 million fish in 1993–1999. The overall number of migrating pink salmon in even years sharply increased in 1994 up to 215 million fish. After 1994, this estimate exceeded the number of migrating pink salmon in preceding odd years. Ocean survival of juvenile pink salmon gradually declined. This may be related to changes in the North Pacific pelagic ecosystems.  相似文献   

20.
The relative competitive ability of juvenile farm and wild salmonids was investigated to provide insight into the potential effects of introduction of cultured salmon on wild Pacific salmonid ( Oncorhynchus ) species. Aquarium experiments involving equal contests ( i.e. size matched, simultaneously introduced individuals) indicated that two wild coho salmon Oncorhynchus kisutch populations were competitively equal to a farm coho salmon population. In equal contests between farm Atlantic salmon Salmo salar (Mowi strain) and these wild coho salmon populations or coastal cutthroat trout Oncorhynchus clarki clarki , Atlantic salmon were subordinate in all cases. When Atlantic salmon were given a residence advantage, however, they were competitively equal to both wild coho salmon populations, but remained subordinate to coastal cutthroat trout. When Atlantic salmon were given a 10–30% length advantage, they were competitively equal to one wild coho salmon population but remained subordinate to the other. In equal contests in semi-natural stream channels, both wild coho and farm Atlantic salmon grew significantly more in the presence of the other species than when alone. It appears that coho salmon obtain additional food ration by out competing Atlantic salmon, whereas Atlantic salmon were stimulated to feed more in the presence of coho salmon competitors. These results suggest that wild coho salmon and cutthroat trout should out compete farm Atlantic salmon of a similar size in nature. As the relative competitive ability of Atlantic salmon improves when they have a size and residence advantage, should feral populations become established, they may exist on a more equal competitive footing owing to the long freshwater residence of Atlantic salmon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号