首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Plasticity of TCR interactions during CD4(+) T cell activation by an MHC-peptide complex accommodates variation in the peptide or MHC contact sites in which recognition of an altered ligand by the T cell can modify the T cell response. To explore the contribution of this form of TCR cross-recognition in the context of T cell selection on disease-associated HLA molecules, we have analyzed the relationship between TCR recognition of the DRB1*0401- and DRB1*0404-encoded HLA class II molecules associated with rheumatoid arthritis. Thymic reaggregation cultures demonstrated that CD4(+) T cells selected on either DRB1*0401 or DRB1*0404 could be subsequently activated by the other MHC molecule. Using HLA tetramer technology we identify hemagglutinin residue 307-319-specific T cells restricted by DRB1*0401, but activated by hemagglutinin residues 307-319, in the context of DRB1*0404. One such clone exhibits an altered cytokine profile upon activation with the alternative MHC ligand. This altered phenotype persists when both class II molecules are present. These findings directly demonstrate that T cells selected on an MHC class II molecule carry the potential for activation on altered self ligands when encountering Ags presented on a related class II molecule. In individuals heterozygous for these alleles the possibility of TCR cross-recognition could lead to an aberrant immune response.  相似文献   

2.
Despite the accepted role for CD4+ T cells in immune control, little is known about the development of Ag-specific CD4+ T cell immunity upon primary infection. Here we use MHC class II tetramer technology to directly visualize the Ag-specific CD4+ T cell response upon infection of mice with Moloney murine sarcoma and leukemia virus complex (MoMSV). Significant numbers of Ag-specific CD4+ T cells are detected both in lymphoid organs and in retrovirus-induced lesions early during infection, and they express the 1B11-reactive activation-induced isoform of CD43 that was recently shown to define effector CD8+ T cell populations. Comparison of the kinetics of the MoMSV-specific CD4+ and CD8+ T cell responses reveals a pronounced shift toward CD8+ T cell immunity at the site of MoMSV infection during progression of the immune response. Consistent with an important early role of Ag-specific CD4+ T cell immunity during MoMSV infection, CD4+ T cells contribute to the generation of virus-specific CD8+ T cell immunity within the lymphoid organs and are required to promote an inflammatory environment within the virus-infected tissue.  相似文献   

3.
Multiple sclerosis (MS) is an autoimmune disease characterized by infiltration of pathogenic immune cells in the CNS resulting in destruction of the myelin sheath and surrounding axons. We and others have previously measured the frequency of human myelin-reactive T cells in peripheral blood. Using T cell cloning techniques, a modest increase in the frequency of myelin-reactive T cells in patients as compared with control subjects was observed. In this study, we investigated whether myelin oligodendrocyte glycoprotein (MOG)-specific T cells could be detected and their frequency was measured using DRB1*0401/MOG(97-109(107E-S)) tetramers in MS subjects and healthy controls expressing HLA class II DRB1*0401. We defined the optimal culture conditions for expansion of MOG-reactive T cells upon MOG peptide stimulation of PMBCs. MOG(97-109)-reactive CD4(+) T cells, isolated with DRB1*0401/MOG(97-109) tetramers, and after a short-term culture of PMBCs with MOG(97-109) peptides, were detected more frequently from patients with MS as compared with healthy controls. T cell clones from single cell cloning of DRB1*0401/MOG(97-109(107E-S)) tetramer(+) cells confirmed that these T cell clones were responsive to both the native and the substituted MOG peptide. These data indicate that autoantigen-specific T cells can be detected and enumerated from the blood of subjects using class II tetramers, and the frequency of MOG(97-109)-reactive T cells is greater in patients with MS as compared with healthy controls.  相似文献   

4.
Detection of autoreactive T cells using MHC II tetramers is difficult because of the low affinity of their TCR. We have generated a class II tetramer using the IA(s) class II molecule combined with an autoantigenic peptide from myelin proteolipid protein (PLP; PLP(139-151)) and used it to analyze myelin PLP(139-151)-reactive T cells. Using monomers and multimerized complexes labeled with PE, we confirmed the specificity of the reagent by bioassay and flow cytometry. The IA(s) tetramers stimulated and stained the PLP(139-151)-specific 5B6 TCR transgenic T cells and a polyclonal cell line specific for PLP(139-151), but not a control T cell line specific for PLP(178-191). We used this reagent to optimize conditions to detect low affinity autoreactive T cells. We found that high pH ( approximately 8.0) and neuraminidase treatment enhances the staining capacity of PLP(139-151) tetramer without compromising specificity. Furthermore, we found that induction of calcium fluxing by tetramers in T cells may be used as a sensitive measure to detect autoreactive T cells with a low affinity. Taken together, the data show that the tetrameric reagent binds and stimulates PLP(139-151)-reactive T cells with specificity. This tetrameric reagent will be useful in studying the evolution of PLP(139-151)-specific repertoire in naive mice and its expansion during the autoimmune disease experimental autoimmune encephalomyelitis.  相似文献   

5.
HLA class I tetramers have revolutionized the study of Ag-specific CD8+ T cell responses. Technical problems and the rarity of Ag-specific CD4+ Th cells have not allowed the potential of HLA class II tetramers to be fully realized. Here, we optimize HLA class II tetramer staining methods through the use of a comprehensive panel of HIV-, influenza-, CMV-, and tetanus toxoid-specific tetramers. We find rapid and efficient staining of DR1- and DR4-restricted CD4+ cell lines and clones and show that TCR internalization is not a requirement for immunological staining. We combine tetramer staining with magnetic bead enrichment to detect rare Ag-specific CD4+ T cells with frequencies as low as 1 in 250,000 (0.0004% of CD4+ cells) in human PBLs analyzed directly ex vivo. This ultrasensitive detection allowed phenotypic analysis of rare CD4+ T lymphocytes that had experienced diverse exposure to Ag during the course of viral infections. These cells would not be detectable with normal flow-cytometric techniques.  相似文献   

6.
The polyclonal nature of T cells expanding in an ongoing immune response results in a range of disparate affinities and activation potential. Recently developed human class II tetramers provide a means to analyze this diversity by direct characterization of the trimolecular TCR-peptide-MHC interaction in live cells. Two HSV-2 VP16(369-379)-specific, DQA1*0102/DQB1*0602 (DQ0602)-restricted T cell clones were compared by means of T cell proliferation assay and HLA-DQ0602 tetramer staining. These two clones were obtained from the same subject, but show different TCR gene usage. Clone 48 was 10-fold more sensitive to VP16(369-379) peptide stimulation than clone 5 as assayed by proliferation assays, correlating with differences in MHC tetramer binding. Clone 48 gave positive staining with the DQ0602/VP16(369-379) tetramer at either 23 or 37 degrees C. Weak staining was also observed at 4 degrees C. Clone 5 showed weaker staining compared with clone 48 at 37 degrees C, and no staining was observed at 23 degrees C or on ice. Receptor internalization was not required for positive staining. Competitive binding indicates that the cell surface TCR of clone 48 has higher affinity for the DQ0602/VP16(369-379) complex than clone 5. The higher binding affinity of clone 48 for the peptide-MHC complex also correlates with a slower dissociation rate compared with clone 5.  相似文献   

7.
Application of tetrameric MHC class I-peptide complexes has significantly improved the monitoring of antigen-specific T cell immune responses in mouse models as well as in clinical studies. Especially MHC class I tetramer analysis of tumor-specific T cells in suspension or on thick vibratome sections from viable tissue has been proven extremely useful. Using the well-characterized mouse tyrosinase-related-protein-2 specific cytotoxic T cell (CTL) clone LP9, we now developed a method that allows for specific identification of T cells with MHC class I tetramers in 8 mum thick, chemically fixed cryosections. The protocol was validated in a murine influenza virus-infection model. Moreover, analysis of delayed type hypersensitivity (DTH) skin biopsies from melanoma patients vaccinated with peptide-loaded mature dendritic cells, revealed the presence and location of anti-tumor CTLs. The specificity of the CTLs detected in situ correlated with both the DTH challenge specificity and reactivity of cell suspensions derived from the same biopsies. Collectively, our data demonstrate that in situ MHC class I tetramer staining provides a valuable tool to reveal the presence and anatomical location of specific CTLs in frozen tissue following immune-based treatment strategies in cancer patients.  相似文献   

8.

Background

Ageing has been shown to reduce CD8 T cell repertoire diversity and immune responses against influenza virus infection in mice. In contrast, less is known about the impact of ageing on CD4 T cell repertoire diversity and immune response to influenza virus infection.

Results

The CD4 T cell response was followed after infection of young and aged C57BL/6 mice with influenza virus using a tetramer specific for an immunodominant MHC class II epitope of the influenza virus nucleoprotein. The appearance of virus-specific CD4 T cells in the lung airways of aged mice was delayed compared to young mice, but the overall peak number and cytokine secretion profile of responding CD4 T cells was not greatly perturbed. In addition, the T cell repertoire of responding cells, determined using T cell receptor Vβ analysis, failed to show the profound effect of age we previously described for CD8 T cells. The reduced impact of age on influenza-specific CD4 T cells was consistent with a reduced effect of age on the overall CD4 compared with the CD8 T cell repertoire in specific pathogen free mice. Aged mice that were thymectomized as young adults showed an enhanced loss of the epitope-specific CD4 T cell response after influenza virus infection compared with age-matched sham-thymectomized mice, suggesting that a reduced repertoire can contribute to impaired responsiveness.

Conclusions

The diversity of the CD4 T cell repertoire and response to influenza virus is not as profoundly impaired by ageing in C57BL/6 mice as previously shown for CD8 T cells. However, adult thymectomy enhanced the impact of ageing on the response. Understanding the impact of ageing on CD4 T cell responses to influenza virus infection is an important prerequisite for developing better vaccines for the elderly.
  相似文献   

9.
Glioblastoma is the most common and highly malignant brain tumor. It is also one among the most therapy-resistant human neoplasias. Patients die within a year of diagnosis despite the use of available treatment strategies such as surgery, radiotherapy, and chemotherapy. Thus, there is a critical need to find a novel therapeutic strategy for treating this disease. Here, we have investigated the molecular mechanisms for induction of apoptosis as well as for activation of immune components in human malignant glioblastoma T98G and U87MG cells following treatment with all-trans retinoic acid (ATRA) plus interferon-gamma (IFN-gamma). Treatment of glioblastoma cells with ATRA alone prevented cell proliferation and induced astrocytic differentiation, while IFN-gamma alone induced apoptosis and modulated expression of human leukocyte antigen (HLA) class II molecules such as HLA-DRalpha, HLA-DR complex, invariant chain (Ii), HLA-DM (an important catalyst of the class II-peptide loading), and gamma interferon-inducible lysosomal thiol-reductase (GILT). Interestingly, both T98G and U87MG cells showed more increase in apoptosis with expression of the HLA class II components for an effective immune response following treatment with ATRA plus IFN-gamma than with IFN-gamma alone. Apoptotic mode of cell death was confirmed morphologically by Wright staining and biochemically by measuring an increase in caspase-3 activity. While conversion of tumor cells into HLA class II+/Ii- cells by stimulation with the helper CD4+ T cells is thought to be challenging, this study reports for the first time that treatment of glioblastoma cells with ATRA plus IFN-gamma can simultaneously enhance apoptosis and expression of the HLA class II immune components with a marked suppression of Ii expression. Taken together, this study suggests that induction of apoptosis and immune components of the HLA class II pathway by ATRA plus IFN-gamma may be a promising chemoimmunotherapeutic strategy for treatment of human malignant glioblastoma.  相似文献   

10.
Hybrid mice of the (B6 X bm12)F1 combination were inoculated i.v. with parental B6 spleen cells to induce a class II graft-vs-host disease (GVH). Such mice failed to generate in vitro cytotoxic T lymphocyte (CTL) responses that were dependent upon L3T4+ T helper cell (Th) function (e.g., anti-B6-TNP) but were capable of generating in vitro CTL responses that could be mediated by Lyt-2+ Th cells (anti-allo class I). When Th function was assayed directly by interleukin 2 (IL 2) secretion, class II GVH animals were found to be deficient in L3T4+ but not Lyt-2+ IL 2-secreting Th cells. This selective deficiency in L3T4+ Th function correlates with a selective decrease in class II GVH mice of host-derived derived L3T4+ T cells. In addition, it was found that the spleens of class II GVH mice contained cells capable of selectively suppressing L3T4+ Th function. In contrast, mice in which a class I + II GVH occurred were depleted of both L3T4+ and Lyt-2+ Th function as assessed by IL 2 production. The findings that class II GVH selectively depletes L3T4+ T cells and T cell functions are discussed with respect to the immune function of distinct T cell subsets in normal and diseased states.  相似文献   

11.
All bacterial superantigens use common structural strategies to bind to major histocompatibility complex class II receptors, while binding the T cell antigen receptor in different ways.

Overstimulation of the immune response is responsible for the acute pathological effects, while reactivation of developmentally silenced T cells might result in autoimmune disease. Certain diseases might be controlled with superantigens or genetically attenuated vaccines.  相似文献   


12.
Schmid D  Münz C 《Autophagy》2007,3(2):133-135
The adaptive immune system is orchestrated by CD4+ T cells. These cells detect peptides presented on Major Histocompatibility Complex (MHC) class II molecules, which are loaded in late endosomes with products of lysosomal proteolysis. One pathway by which proteins gain access to degradation in lysosomes is macroautophagy. We recently showed that constitutive macroautophagy can be detected in cells relevant for the immune system, including dendritic cells. In these antigen presenting cells, autophagosomes frequently fused with MHC class II antigen loading compartments and targeting of Influenza matrix protein 1 (MP1) for macroautophagy enhanced MHC class II presentation to MP1-specific CD4+ T cell clones up to 20 fold. Our findings indicate that macroautophagy is a constitutive and efficient pathway of antigen delivery for MHC class II presentation. We suggest that this pathway samples intracellular proteins for immune surveillance and induction of tolerance in CD4+ T cells, and could be targeted for improved MHC class II presentation of vaccine antigens.  相似文献   

13.
NY-ESO-1 is frequently expressed in epithelial ovarian cancer (EOC) and elicits spontaneous humoral and cellular immune responses in a proportion of EOC patients. The identification of NY-ESO-1 peptide epitopes with dual HLA-class I and class II specificities might be useful in vaccination strategies for generating cognate CD4+ T cell help to augment CD8+ T cell responses. Here, we describe two novel NY-ESO-1-derived MHC class I epitopes from EOC patients with spontaneous humoral immune response to NY-ESO-1. CD8+ T cells derived from NY-ESO-1 seropositive EOC patients were presensitized with a recombinant adenovirus encoding NY-ESO-1or pooled overlapping peptides. These epitopes, ESO127-136 presented by HLA-A68 molecule, and ESO127-135 restricted by HLA-Cw15 allele, are located within ESO119-143, a promiscuous HLA-class II region containing epitopes that bind to multiple HLA-DR alleles. The novel epitopes were naturally processed by APC or naturally presented by tumor cell lines. In addition, these epitopes induced NY-ESO-1-specific CTL in NY-ESO-1 seropositive EOC patients. Together, the results indicate that ESO119-143 epitope has dual HLA classes I and II specificities, and represents a potential vaccine candidate in a large number of cancer patients.  相似文献   

14.

Introduction

We have previously demonstrated that ex vivo inhibition of costimulatory molecules on antigen-pulsed dendritic cells (DCs) can be useful for induction of antigen-specific immune deviation and suppression of autoimmune arthritis in the collagen induced arthritis (CIA) model. The current study evaluated a practical method of immune modulation through temporary systemic inhibition of the costimulatory molecule CD40.

Methods

Mice with collagen II (CII)-induced arthritis (CIA) were administered siRNA targeting the CD40 molecule. Therapeutic effects were evaluated by clinical symptoms, histopathology, Ag-specific T cell and B cell immune responses.

Results

Systemic administration of CD40-targeting siRNA can inhibit antigen-specific T cell response to collagen II, as well as prevent pathogenesis of disease in both a pre- and post-immunization manner in the CIA model. Disease amelioration was associated with suppression of Th1 cytokines, attenuation of antibody production, and upregulation of T regulatory cells.

Conclusions

These studies support the feasibility of transient gene silencing at a systemic level as a mechanism of resetting autoreactive immunity.  相似文献   

15.
16.
17.
Norimine J  Han S  Brown WC 《Immunogenetics》2006,58(9):726-739
Antigen-specific CD4+ T cells play a critical role in protective immunity to many infectious pathogens. Although the antigen-specific CD4+ T cells can be measured by functional assays such as proliferation or cytokine enzyme-linked immunospot, such assays are limited to a specific function and cannot quantify anergic or suppressed T cells. In contrast, major histocompatiblity complex (MHC) class II tetramers can enumerate epitope-specific CD4+ T cells independent of function. In this paper, we report the construction of bovine leukocyte antigen MHC class II tetramers using a novel mammalian cell system to express soluble class II DRA/DRB3 molecules and defined immunodominant peptide epitopes of Anaplasma marginale major surface proteins (MSPs). Phycoerythrin-labeled tetramers were either loaded with exogenous peptide or constructed with the peptide epitope linked to the N terminus of the DRB3 chain. A DRB3*1101 tetramer loaded with MSP1a peptide F2-5B (ARSVLETLAGHVDALG) and DRB3*1201 tetramers loaded with MSP1a peptide F2-1-1b (GEGYATYLAQAFA) or MSP2 peptide P16-7 (NFAYFGGELGVRFAF) specifically stained antigen-specific CD4+ T cell lines and clones. Tetramers constructed with the T-cell epitope linked to the DRB3 chain were slightly better at labeling CD4+ T cells. In one cell line, the number of tetramer-positive T cells increased to approximately 94% of the CD4+ T cells after culture for 21 weeks with specific antigen. This novel technology should be useful to track the fate of antigen-specific CD4+ T-cell responses in cattle after immunization or infection with persistent pathogens, such as A. marginale, that modulate the host immune response.  相似文献   

18.

Background

Safety and cellular immunogenicity of rising doses and varying regimens of a poly-epitope vaccine were evaluated in advanced metastatic melanoma. The vaccine comprised plasmid DNA and recombinant modified vaccinia virus Ankara (MVA) both expressing a string (Mel3) of seven HLA.A2/A1 epitopes from five melanoma antigens.

Methods

Forty-one HLA-A2 positive patients with stage III/IV melanoma were enrolled. Patient groups received one or two doses of DNA.Mel3 followed by escalating doses of MVA.Mel3. Immunisations then continued eight weekly in the absence of disease progression. Epitope-specific CD8+ T cell responses were evaluated using ex-vivo tetramer and IFN-γ ELISPOT assays. Safety and clinical responses were monitored.

Results

Prime-boost DNA/MVA induced Melan-A-specific CD8+ T cell responses in 22/31 (71%) patients detected by tetramer assay. ELISPOT detected a response to at least one epitope in 10/31 (32%) patients. T cell responder rates were <50% with low-dose DNA/MVA, or MVA alone, rising to 91% with high-dose DNA/MVA. Among eight patients showing evidence of clinical benefit—one PR (24 months+), five SD (5 months+) and two mixed responses—seven had associated immune responses. Melan-A-tetramer+ immunity was associated with a median 8-week increase in time-to-progression (P = 0.037) and 71 week increase in survival (P = 0.0002) compared to non-immunity. High-dose vaccine was well tolerated. The only significant toxicities were flu-like symptoms and injection-site reactions.

Conclusions

DNA.Mel3 and MVA.Mel3 in a prime-boost protocol generated high rates of immune response to melanoma antigen epitopes. The treatment was well tolerated and the correlation of immune responses with patient outcomes encourages further investigation.  相似文献   

19.
MHC class II molecules on the surface of antigen-presenting cells display a range of peptides for recognition by the T-cell receptors of CD4+ T helper cells. Therefore, MHC class II molecules are central to effective adaptive immune responses, but conversely, genetic and epidemiological data have implicated these molecules in the pathogenesis of autoimmune diseases. Indeed, the strength of the associations between particular MHC class II alleles and disease render them the main genetic risk factors for autoimmune disorders such as type 1 diabetes. Here, we discuss the insights that the crystal structures of MHC class II molecules provide into the molecular mechanisms by which sequence polymorphisms might contribute to disease susceptibility.  相似文献   

20.
Identification of tumor-associated Ags is a prerequisite for vaccine-based and adoptive immune therapies. Some tumor-associated Ags elicit specific CD8 T cells in patients with chronic myeloid leukemia (CML). Here, we characterized ex vivo responses of CD8 T cells from CML patients to extrajunction bcr-abl peptides and telomerase 540-548 hTert, PR1, and WT1 peptides. CML-specific CD8 T cells were present in most treated patients and were usually multiepitopic: WT1, hTert, PR1, and bcr74 tetramer(+) cells were detected in 85, 82, 67, and 61% of patients, respectively. The breadth and magnitude of these responses did not differ significantly according to treatment or disease status. CML-specific tetramer(+) CD8 T cells had a predominantly memory phenotype, an intermediate perforin content, and low intracellular IFN-gamma accumulation in the presence of the relevant peptide. However, in short-term culture with HLA-matched leukemia cells, the patients' memory T cells were specifically reactivated to become IFN-gamma-producing effector cells, suggesting that CD8 T cell precursors with lytic potential are present in vivo and can be activated by appropriate stimulation. In conclusion, this study shows that multiepitopic tumor-specific CD8 T cell responses occur naturally in most CML patients, opening the way to new strategies for enhancing anti-CML immunity, in particular in patients with minimal residual disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号