首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
FoxO1 integrates multiple metabolic pathways. Nutrient levels modulate FoxO1 acetylation, but the functional consequences of this posttranslational modification are unclear. To answer this question, we generated mice bearing alleles that encode constitutively acetylated and acetylation-defective FoxO1 proteins. Homozygosity for an allele mimicking constitutive acetylation (Foxo1(KQ/KQ)) results in embryonic lethality due to cardiac and angiogenesis defects. In contrast, mice homozygous for?a constitutively deacetylated Foxo1 allele (Foxo1(KR/KR)) display a unique metabolic phenotype of impaired insulin action on hepatic glucose metabolism but decreased plasma lipid levels and low respiratory quotient that are consistent with a state of preferential lipid usage. Moreover, Foxo1(KR/KR) mice show?a dissociation between weight gain and insulin resistance in predisposing conditions (high fat diet, diabetes, and insulin receptor mutations), possibly due to decreased cytokine production in adipose tissue. Thus, acetylation inactivates FoxO1 during nutrient excess whereas deacetylation selectively potentiates FoxO1 activity, protecting against excessive catabolism during nutrient deprivation.  相似文献   

2.
The factors underlying cardiovascular risk in patients with diabetes have not been clearly elucidated. Efforts to study this in mice have been hindered because the usual atherogenic diets that contain fat and cholesterol also lead to obesity and insulin resistance. We compared plasma glucose, insulin, and atherosclerotic lesion formation in LDL receptor knockout (Ldlr(-/-)) mice fed diets with varying fat and cholesterol content that induced similar lipoprotein profiles. Ldlr(-/-) mice fed a high-fat diet developed obesity, mild hyperglycemia, hyperinsulinemia, and hypertriglyceridemia. Quantitative and qualitative assessments of atherosclerosis were unchanged in diabetic Ldlr(-/-) mice fed a high-fat diet compared with lean nondiabetic control mice after 20 weeks of diet. Although one group of mice fed diets for 40 weeks had larger lesions at the aortic root, this was associated with a more atherogenic lipoprotein profile. The presence of a human aldose reductase transgene had no effect on atherosclerosis in fat-fed Ldlr(-/-) mice with mild diabetes. Our data suggest that when lipoprotein profiles are similar, addition of fat to a cholesterol-rich diet does not increase atherosclerotic lesion formation in Ldlr(-/-) mice.  相似文献   

3.
4.
Mast cells promote atherosclerosis by releasing proinflammatory cytokines   总被引:9,自引:0,他引:9  
Mast cells contribute importantly to allergic and innate immune responses by releasing various preformed and newly synthesized mediators. Previous studies have shown mast cell accumulation in human atherosclerotic lesions. This report establishes the direct participation of mast cells in atherogenesis in low-density lipoprotein receptor-deficient (Ldlr(-/-)) mice. Atheromata from compound mutant Ldlr(-/-) Kit(W-sh)(/W-sh) mice showed decreased lesion size, lipid deposition, T-cell and macrophage numbers, cell proliferation and apoptosis, but increased collagen content and fibrous cap development. In vivo, adoptive transfer of syngeneic wild-type or tumor necrosis factor (TNF)-alpha-deficient mast cells restored atherogenesis to Ldlr(-/-)Kit(W-sh/W-sh) mice. Notably, neither interleukin (IL)-6- nor interferon (IFN)-gamma-deficient mast cells did so, indicating that the inhibition of atherogenesis in Ldlr(-/-)Kit(W-sh/W-sh) mice resulted from the absence of mast cells and mast cell-derived IL-6 and IFN-gamma. Compared with wild-type or TNF-alpha-deficient mast cells, those lacking IL-6 or IFN-gamma did not induce expression of proatherogenic cysteine proteinase cathepsins from vascular cells in vitro or affect cathepsin and matrix metalloproteinase activities in atherosclerotic lesions, implying that mast cell-derived IL-6 and IFN-gamma promote atherogenesis by augmenting the expression of matrix-degrading proteases. These observations establish direct participation of mast cells and mast cell-derived IL-6 and IFN-gamma in mouse atherogenesis and provide new mechanistic insight into the pathogenesis of this common disease.  相似文献   

5.
6.
7.
8.
9.
10.
11.
Abnormal angiogenesis in Foxo1 (Fkhr)-deficient mice   总被引:2,自引:0,他引:2  
Members of the Foxo family, Foxo1 (Fkhr), Foxo3 (Fkhrl1), and Foxo4 (Afx), are mammalian homologs of daf-16, which influences life span and energy metabolism in Caenorhabditis elegans. Mammalian FOXO proteins also play important roles in cell cycle arrest, apoptosis, stress resistance, and energy metabolism. In this study, we generated Foxo1-deficient mice to investigate the physiological role of FOXO1. The Foxo1-deficient mice died around embryonic day 11 because of defects in the branchial arches and remarkably impaired vascular development of embryos and yolk sacs. In vitro differentiation of embryonic stem cells demonstrated that endothelial cells derived from wild-type and Foxo1-deficient embryonic stem cells were able to produce comparable numbers of colonies supported by a layer of OP9 stromal cells. Although the morphology of the endothelial cell colonies was identical in both genotypes in the absence of exogenous vascular endothelial growth factor (VEGF), Foxo1-deficient endothelial cells showed a markedly different morphological response compared with wild-type endothelial cells in the presence of exogenous VEGF. These results suggest that Foxo1 is essential to the ability of endothelial cells to respond properly to a high dose of VEGF, thereby playing a critical role in normal vascular development.  相似文献   

12.
13.
The metabolic syndrome is a group of disorders including obesity, insulin resistance, atherogenic dyslipidemia, hyperglycemia, and hypertension. To date, few animal models have been described to recapitulate the phenotypes of the syndrome. In this study, we generated and characterized two lines of triple-knockout mice that are deficient in either apolipoprotein E (Apoe(-/-)) or low-density lipoprotein receptor (Ldlr(-/-)) and express no leptin (Lep(ob/ob)) or apolipoprotein B-48 but exclusively apolipoprotein B-100 (Apob(100/100)). These two lines are referred to as Apoe triple-knockout-Apoe 3KO (Apoe(-/-)Apob(100/100)Lep(ob/ob)) and Ldlr triple-knockout-Ldlr 3KO (Ldlr(-/-)Apob(100/100)Lep(ob/ob)) mice. Both lines develop obesity, hyperinsulinemia, hyperlipidemia, hypertension, and atherosclerosis. However, only Apoe 3KO mice are hyperglycemic and glucose intolerant and are more obese than Ldlr 3KO mice. To evaluate the utility of these lines as pharmacological models, we treated both with leptin and found that leptin therapy ameliorated most metabolic derangements. Leptin was more effective in improving glucose tolerance in Ldlr 3KO than Apoe 3KO animals. The reduction of plasma cholesterol by leptin in Ldlr 3KO mice can be accounted for by its suppressive effect on food intake. However, in Apoe 3KO mice, leptin further reduced plasma cholesterol independently of its effect on food intake, and this improvement correlated with a smaller plaque lesion area. These effects suggest a direct role of leptin in modulating VLDL levels and, likewise, the lesion areas in VLDL-enriched animals. These two lines of mice represent new models with features of the metabolic syndrome and will be useful in testing therapies targeted for combating the human condition.  相似文献   

14.
15.
Human atherosclerotic coronary vessels elicited vasoconstriction to acetylcholine (Ach) and revealed a phenomenon of vasospasm. Homocysteine (Hcy) levels are elevated in the atherosclerotic plaque tissue, suggesting its pathological role in endothelial damage in atherosclerotic diseases. Accordingly, we examined the role hyperhomocysteinemia in coronary endothelial dysfunction, vessel wall thickness, lumen narrowing, leading to acute/chronic coronary vasospasm. The therapeutic potential and mechanisms of folic acid (FA) using hyperhomocysteinemic cystathionine beta synthase heterozygote (CBS-/+) and wild type (CBS+/+) mice were addressed. The CBS-/+ and CBS+/+ mice were treated with or without a Hcy lowering agent FA in drinking water (0.03 g/L) for 4 weeks. The isolated mouse septum coronary artery was cannulated and pressurized at 60 mmHg. The wall thickness and lumen diameters were measured by Ion-Optic. The vessels were treated with Ach (10(-8) -10(-5) M) and, for comparison, with non-endothelial vasodilator sodium nitroprusside (10(-5) M). The endothelium-impaired arteries from CBC-/+ mice constricted in response to Ach and this vasoconstriction was mitigated with FA supplementation. The level of endothelial nitric oxide synthase (eNOS) was lower in coronary artery in CBS-/+ than of CBS+/+ mice. Treatment with FA increased the levels of Ach-induced NO generation in the coronary artery of CBS-/+ mice. The results suggest that Ach induced coronary vasoconstriction in CBS-/+ mice and this vasoconstriction was ameliorated by FA treatment. The mechanisms for the impairment of vascular function and therapeutic effects of FA may be related to the regulation of eNOS expression, NO availability and tissue homocysteine.  相似文献   

16.
Insulin resistance in diabetes and metabolic syndrome is thought to increase susceptibility to atherosclerotic cardiovascular disease, but the underlying mechanisms are poorly understood. To evaluate the possibility that decreased insulin signaling in macrophage foam cells might worsen atherosclerosis, Ldlr(-/-) mice were transplanted with insulin receptor Insr(+/+) or Insr(-/-) bone marrow. Western diet-fed Insr(-/-) recipients developed larger, more complex lesions with increased necrotic cores and increased numbers of apoptotic cells. Insr(-/-) macrophages showed diminished Akt phosphorylation and an augmented ER stress response, leading to induction of scavenger receptor A and increased apoptosis when challenged with cholesterol loading or nutrient deprivation. These studies suggest that defective insulin signaling and reduced Akt activity impair the ability of macrophages to deal with ER stress-induced apoptosis within atherosclerotic plaques.  相似文献   

17.
Increased plasma free fatty acid (FFA) level is a hallmark of type 2 diabetes. However, the underlying molecular basis for FFA-caused hyperglycemia remains unclear. Here we identified plasma 5'-adenosine monophosphate (pAMP) markedly elevated in the plasma of type 2 diabetic mice. High levels of FFAs induced damage in vein endothelial cells and contributed to an increase in pAMP. Administration of synthetic 5'-AMP caused hyperglycemia and impaired insulin action in lean wild-type mice. 5'-AMP elevated blood glucose in mice deficient in adenosine receptors with equal efficiency as wild-type mice. The function of pAMP was initiated by the elevation of cellular adenosine levels, directly stimulating G-6-Pase enzyme activity, attenuating insulin-dependent GLUT4 translocation in skeletal muscle, and displaying a rapid and steep increase in blood glucose and a decrease in hepatic glycogen level. It was followed by an increase in the gene expression of hepatic Foxo1 and its targeting gene Pepck and G6Pase, which was similar to diabetic phenotype in db/db mice. Our results suggest that pAMP is a potential upstream regulator of hyperglycemia in type 2 diabetes.  相似文献   

18.
Considerable evidence supports that the CD4(+) T cell-mediated immune response contributes to the development of atherosclerotic plaque. However, the effects of Th17 cells on atherosclerosis are not thoroughly understood. In this study, we evaluated the production and function of Th17 and Th1 cells in atherosclerotic-susceptible ApoE(-/-) mice. We observed that the proportion of Th17 cells, as well as Th1, increased in atherosclerotic ApoE(-/-) mice compared with nonatherosclerotic wild-type littermates. In ApoE(-/-) mice with atherosclerosis, the expression of IL-17 and retinoic acid-related orphan receptor γt was substantially higher in the arterial wall with plaque than in the arterial wall without plaque. Increased Th17 cells were associated with the magnitude of atherosclerotic plaque in ApoE(-/-) mice. Importantly, treatment of ApoE(-/-) mice with neutralizing anti-IL-17 Ab dramatically inhibited the development of atherosclerotic plaque, whereas rIL-17 application significantly promoted the formation of atherosclerotic plaque. These data demonstrate that Th17 cells play a critical role in atherosclerotic plaque formation in mice, which may have implications in patients with atherosclerosis.  相似文献   

19.
20.
The present study aimed to define the ability of erythropoietin (EPO) to mobilize hematopoietic stem cells (c-kit(+)/sca-1(+)/lin-1(-); KSL-cells) and hematopoietic progenitor cells (CD34(+) cells), including vascular endothelial growth factor receptor 2 expressing hematopoietic progenitor cells (CD34(+)/Flk-1(+) cells). We also sought to determine the role of endothelial nitric oxide synthase (eNOS) in EPO-induced mobilization. Wild type (WT) and eNOS(-/-) mice were injected bi-weekly with recombinant erythropoietin (EPO, 1000U/kg, s.c.) for 14 days. EPO increased the number of KSL, CD34(+), CD34(+)/Flk-1(+) cells in circulating blood of wild type mice. These effects of EPO were abolished in eNOS(-/-) mice. Our results demonstrate that, EPO stimulates mobilization of hematopoietic stem and progenitor cells. This effect of EPO is critically dependent on activation of eNOS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号