首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Collybistin promotes submembrane clustering of gephyrin and is essential for the postsynaptic localization of gephyrin and γ-aminobutyric acid type A (GABA(A)) receptors at GABAergic synapses in hippocampus and amygdala. Four collybistin isoforms are expressed in brain neurons; CB2 and CB3 differ in the C terminus and occur with and without the Src homology 3 (SH3) domain. We have found that in transfected hippocampal neurons, all collybistin isoforms (CB2(SH3+), CB2(SH3-), CB3(SH3+), and CB3(SH3-)) target to and concentrate at GABAergic postsynapses. Moreover, in non-transfected neurons, collybistin concentrates at GABAergic synapses. Hippocampal neurons co-transfected with CB2(SH3-) and gephyrin developed very large postsynaptic gephyrin and GABA(A) receptor clusters (superclusters). This effect was accompanied by a significant increase in the amplitude of miniature inhibitory postsynaptic currents. Co-transfection with CB2(SH3+) and gephyrin induced the formation of many (supernumerary) non-synaptic clusters. Transfection with gephyrin alone did not affect cluster number or size, but gephyrin potentiated the clustering effect of CB2(SH3-) or CB2(SH3+). Co-transfection with CB2(SH3-) or CB2(SH3+) and gephyrin did not affect the density of presynaptic GABAergic terminals contacting the transfected cells, indicating that collybistin is not synaptogenic. Nevertheless, the synaptic superclusters induced by CB2(SH3-) and gephyrin were accompanied by enlarged presynaptic GABAergic terminals. The enhanced clustering of gephyrin and GABA(A) receptors induced by collybistin isoforms was not accompanied by enhanced clustering of neuroligin 2. Moreover, during the development of GABAergic synapses, the clustering of gephyrin and GABA(A) receptors preceded the clustering of neuroligin 2. We propose a model in which the SH3- isoforms play a major role in the postsynaptic accumulation of GABA(A) receptors and in GABAergic synaptic strength.  相似文献   

2.
Nipecotic acid is one of the most potent competitive inhibitors and alternative substrates for the high-affinity -aminobutyric acid transport system in neurons, but the structural basis of this potency is unclear. Because -aminobutyrate is a highly flexible molecule in solution, it would be expected to lose rotational entropy upon binding to the transport system, a change which does not favor binding. Nipecotic acid, in contrast, is a much less flexible molecule, and one would expect the loss of conformational entropy upon binding to be smaller thus favoring the binding of nipecotic acid over -aminobutyric acid. To investigate this possibility, the thermodynamic parameters, G°, H°, and S°, were determined for the binding of -aminobutyrate and nipecotic acid to the high affinity GABA transport system in synaptosomes. In keeping with expectations, the apparent entropy change for nipecotic acid binding (112±13 J·K–1) was more favorable than the apparent entropy change for -aminobutyric acid binding (61.3±6.6 J·K–1). The results suggest that restricted conformation per se is an important contributory factor to the affinity of nipecotic acid for the high-affinity transport system for -aminobutyric acid.This work was conducted when both authors were at the Department of Chemistry, University of Maryland, College Park.Special issue dedicated to Dr. Elling Kvamme.  相似文献   

3.
The effects of γ-aminobutyric acid (GABA) and its antagonists bicuculline and 2-hydroxysaclofen on neuronal firings in the nucleus of basal optic root (nBOR) in pigeons were studied by using extracellular recording and microiontophoretic techniques. The results suggest that GABA may be an inhibitory neurotransmitter or modulator within nBOR, functioning by means of main mediation of GABAA receptors and of minor mediation of GABAB receptors. Furthermore, GABA and its GABAA receptors are involved in the modulation of directional selectivity in part of nBOR neurons.  相似文献   

4.
Gephyrin is the major protein determinant for the clustering of inhibitory neurotransmitter receptors. Earlier analyses revealed that gephyrin tightly binds to residues 398-410 of the glycine receptor β subunit (GlyR β) and, as demonstrated only recently, also interacts with GABA(A) receptors (GABA(A)Rs) containing the α1, α2, and α3 subunits. Here, we dissect the molecular basis underlying the interactions between gephyrin and GABA(A)Rs containing these α-subunits and compare them to the crystal structure of the gephyrin-GlyR β complex. Biophysical and biochemical assays revealed that, in contrast to its tight interaction with GlyR β, gephyrin only loosely interacts with GABA(A)R α2, whereas it has an intermediate affinity for the GABA(A)R α1 and α3 subunits. Despite the wide variation in affinities and the low overall sequence homology among the identified receptor subunits, competition assays confirmed the receptor-gephyrin interaction to be a mutually exclusive process. Selected gephyrin point mutants that critically weaken complex formation with GlyR β also abolished the GABA(A)R α1 and α3 interactions. Additionally, we identified a common binding motif with two conserved aromatic residues that are central for gephyrin binding. Consistent with the biochemical data, mutations of the corresponding residues within the cytoplasmic domain of α2 subunit-containing GABA(A)Rs attenuated clustering of these receptors at postsynaptic sites in hippocampal neurons. Taken together, our experiments provide key insights regarding similarities and differences in the complex formation between gephyrin and GABA(A)Rs compared with GlyRs and, hence, the accumulation of these receptors at postsynaptic sites.  相似文献   

5.
6.
Solomon PS  Oliver RP 《Planta》2002,214(3):414-420
The growth of the biotrophic pathogen Cladosporium fulvum within the tomato (Lycopersicon esculentum Mill.) leaf is restricted to the intercellular space. Previous studies from this laboratory have demonstrated that gamma-aminobutyric acid (GABA) accumulates to millimolar concentrations in the apoplast during a compatible interaction. We decided to further investigate the role of GABA during infection. A gene encoding a required enzyme for GABA metabolism, GABA transaminase (Gat1), was cloned and sequenced from C. fulvum. The predicted protein sequence of Gat1 had high homology to other fungal GABA transaminases, particularly from Aspergillus nidulans. In vitro expression experiments revealed Gat1 to be strongly expressed during fungal growth on both GABA and glutamate whereas nearly no expression was evident during nitrogen starvation conditions. Expression of Gat1 was also apparent during infection, suggesting for the first time that C. fulvum actively metabolises GABA during infection. This indicates that the fungus may be utilising the GABA in the apoplast as a nutrient source. Further analysis revealed that the expression of tomato glutamate decarboxylase, the enzyme responsible for GABA synthesis, appeared appreciably higher during a compatible interaction than in the incompatible interaction. These findings imply that the infecting fungus may alter the physiology of the tomato leaf with the result that a source of nitrogen is supplied.  相似文献   

7.
Mixed cell suspensions from rabbit brain have been used to study the effect of base exchange in membrane phospholipids, on amino acid accumulation in vitro. -Aminobutyric acid (GABA), glutamic acid, and aminoisobutyric acid have been used. The accumulation of [3H]GABA, at concentrations employing the high-affinity uptake system, was measured after base-exchange reactions with ethanolamine, choline, orL-serine. Serine incorporation induced an increase of GABA uptake at all the concentrations used, while choline incorporation essentially led to inhibition of GABA accumulation. Ethanolamine exchange produced both stimulation and inhibition. The observed effects were not specific for GABA. Neuronal and glial cell perikarya and synaptosomes were studied in the same system in an attempt to resolve the complex type of response obtained with the mixed suspension. Cell specificity was found with respect to stimulation or inhibition of GABA transport after base exchange but, in some cases, the isolated fractions retained the multiphasic response observed with the mixed suspension.  相似文献   

8.
The multifunctional scaffolding protein gephyrin is a key player in the formation of the postsynaptic scaffold at inhibitory synapses, clustering both inhibitory glycine receptors (GlyRs) and selected GABA(A) receptor (GABA(A)R) subtypes. We report a direct interaction between the GABA(A)R α3 subunit and gephyrin, mapping reciprocal binding sites using mutagenesis, overlay, and yeast two-hybrid assays. This analysis reveals that critical determinants of this interaction are located in the motif FNIVGTTYPI in the GABA(A)R α3 M3-M4 domain and the motif SMDKAFITVL at the N terminus of the gephyrin E domain. GABA(A)R α3 gephyrin binding-site mutants were unable to co-localize with endogenous gephyrin in transfected hippocampal neurons, despite being able to traffic to the cell membrane and form functional benzodiazepine-responsive GABA(A)Rs in recombinant systems. Interestingly, motifs responsible for interactions with GABA(A)R α2, GABA(A)R α3, and collybistin on gephyrin overlap. Curiously, two key residues (Asp-327 and Phe-330) in the GABA(A)R α2 and α3 binding sites on gephyrin also contribute to GlyR β subunit-E domain interactions. However, isothermal titration calorimetry reveals a 27-fold difference in the interaction strength between GABA(A)R α3 and GlyR β subunits with gephyrin with dissociation constants of 5.3 μm and 0.2 μm, respectively. Taken together, these observations suggest that clustering of GABA(A)R α2, α3, and GlyRs by gephyrin is mediated by distinct mechanisms at mixed glycinergic/GABAergic synapses.  相似文献   

9.
A diaryltriazine, LY81067, effectively protects against pentylenetetrazole- and picrotoxin-induced convulsions in mice, with ED50 values of 5.7 and 5.8 mg/kg i.p., respectively. LY81067 enhances the binding of both 3H-GABA and 3H-flunitrazepam to specific sites in rat brain membranes. The degree of enhancement by LY81067 varies from one brain region to another and is different for the binding of 3H-GABA and 3H-flunitrazepam. In cortical membranes, LY81067 increases the affinity of 3H-GABA for both high and low affinity sites and increases the number of sites. LY81067 increases the affinity of 3H-flunitrazepam for its binding sites without greatly increasing the number of sites. Like the pyrazolopyridines, the enhancement of 3H-flunitrazepam binding by LY81067 is dependent on chloride or related anions and is reversed by picrotoxin, suggesting that LY81067 exerts its anticonvulsant effects by binding to or near picrotoxin binding sites. The differential effects of LY81067 on the enhancements of 3H-GABA and 3H-flunitrazepam binding in several brain regions suggest extensive multiplicity of GABA/benzodiazepine/picrotoxin/anioin receptor complexes.  相似文献   

10.
To investigate the mechanisms by which serum levels of γ-aminobutyric acid (GABA) become elevated in experimental acute liver failure, a multicompartmental model of GABA metabolism has been constructed and used to simulate previously generated data on the kinetics of 3H-GABA uptake by isolated hepatocytes from normal rats and the kinetics of 3H-GABA in the plasma of normal rabbits, rabbits with galactosamine-induced acute liver failure, and rabbits with divascularized livers. Modeling analysis revealed that acute liver failure was associated with values for the mean fractional catabolic rate of GABA, plasma volume, and hepatic extraction of GABA that were 29%, 12%, and 49% less, respectively, than the corresponding control values. The defect in hepatic tissue extraction of GABA was sufficient to account for only 60% of the 10-fold increase in serum GABA levels that occurs in acute liver failure. Furthermore the 10-fold increase in serum GABA levels occured in acute liver failure before the onset of overt hepatic encephalopathy when hepatic extraction of GABA was not appreciably different from that found in normal rabbits. Thus the increase in serum GABA levels that occurs in acute liver failure cannot be attributed to a defect in hepatic extraction of GABA alone. Indeed, the modeling analysis indicated that in acute liver failure there is a 3—8-fold increase in the rate of delivery of GABA to the systemic circulation, but did not indicate its source.  相似文献   

11.
The ion gradients generated by the Na-K-ATPase play a critical role in epithelia by driving transepithelial transport of various solutes. The efficiency of this Na-K-ATPase-driven vectorial transport depends on the integrity of epithelial junctions that maintain polar distribution of membrane transporters, including the basolateral sodium pump, and restrict paracellular diffusion of solutes. The review summarizes the data showing that, in addition to pumping ions, the Na-K-ATPase located at the sites of cell-cell junction acts as a cell adhesion molecule by interacting with the Na-K-ATPase of the adjacent cell in the intercellular space accompanied by anchoring to the cytoskeleton in the cytoplasm. The review also discusses the experimental evidence on the importance of a specific amino acid region in the extracellular domain of the Na-K-ATPase β(1) subunit for the Na-K-ATPase trans-dimerization and intercellular adhesion. Furthermore, a possible role of N-glycans linked to the Na-K-ATPase β(1) subunit in regulation of epithelial junctions by modulating β(1)-β(1) interactions is discussed.  相似文献   

12.
Fluid shear stress (FSS) induces many forms of responses, including phosphorylation of extracellular signal-regulated kinase (ERK) in endothelial cells (ECs). We have earlier reported rapid tyrosine phosphorylation of platelet endothelial cell adhesion molecule-1 (PECAM-1) in ECs exposed to FSS. Osmotic changes also induced similar PECAM-1 and ERK phosphorylation with nearly identical kinetics. Because both FSS and osmotic changes should mechanically perturb the cell membrane, they might activate the same mechanosignaling cascade. When PECAM-1 is tyrosine phosphorylated by FSS or osmotic changes, SHP-2 binds to it. Here we show that ERK phosphorylation by FSS or osmotic changes depends on PECAM-1 tyrosine phosphorylation, SHP-2 binding to phospho-PECAM-1, and SHP-2 phosphatase activity. In ECs under flow, detectable amounts of SHP-2 and Gab1 translocated from the cytoplasm to the EC junction. When magnetic beads coated with antibodies against the extracellular domain of PECAM-1 were attached to ECs and tugged by magnetic force for 10 min, PECAM-1 associated with the beads was tyrosine phosphorylated. ERK was also phosphorylated in these cells. Binding of the beads by itself or pulling on the cell surface using poly-l-coated beads did not induce phosphorylation of PECAM-1 and ERK. These results suggest that PECAM-1 is a mechanotransduction molecule.  相似文献   

13.
The GABA type A receptor (GABA(A)R) is a member of the pentameric ligand gated ion channel (pLGIC) family that mediates ionotropic neurotransmission. Residues in the intracellular loop domain (ILD) have recently been shown to define part of the ion permeation pathway in several closely related members of the pentameric ligand gated ion channel family. In this study, we investigated the role the ILD of the GABA(A)R α1 subunit plays in channel function. Deletion of the α1 ILD resulted in a significant increase in GABA EC(50) and maximal current amplitude, suggesting that the ILD must be intact for proper receptor function. To test this hypothesis, we conducted a mutagenic screen of all amino acids harboring ionizable side chains within this domain to investigate the contribution of individual charged residues to ion permeation. Using macroscopic and single channel voltage-clamp recording techniques, we found that mutations within a subdomain of the α1 ILD near M3 altered GABA apparent affinity; interestingly, α1(K312E) exhibited reduced partial agonist efficacy. We introduced point mutations near M4, including α1(K383E) and α1(K384E), that enhanced receptor desensitization. Mutation of 5 charged residues within a 39-residue span contiguous with M4 reduced relative anion permeability of the channel and may represent a weak intracellular selectivity filter. Within this subdomain, the α1(K378E) mutation induced a significant reduction in single channel conductance, consistent with our hypothesis that the GABA(A)R α1 ILD contributes directly to the permeation pathway.  相似文献   

14.
Memory dysfunction associated with aging, neurodegenerative and psychiatric disorders represents an increasing medical need. Advances in research exploring the biological mechanisms underlying learning and memory have opened new potential approaches for development of memory-enhancing therapies addressed to selective neuronal targets. In this work, we synthesized some derivatives with a pyrazolo[5,1-c][1,2,4]benzotriazine core to identify ligands on GABAA receptors subtype (benzodiazepine site on GABAA-receptor) endowed with the potential of enhancing cognition activity without the side effects usually associated with non-selective GABAA modulators. In fact, there is much evidence that GABAA-R (γ-aminobutyric acid, type A receptor) subtype ligands have relevance in learning and memory. In vitro and in vivo tests have been performed. Pharmacological data indicate that compounds 7, 13, 14 and 22 act as dual functional modulators of GABAA-Rs (promnemonic and anxiolytic agents) while only compounds 3 and 10 stand out as selectively displaying good antiamnesic and procognitive activity (1 and 3 mg/kg, respectively).  相似文献   

15.
Cloned cDNA encoding a putative member of GABA receptor ϱ-subunit class was isolated from rat-retina-mRNA-derived libraries. The cDNA encodes a signal peptide of 21 amino acids followed by the mature ϱ3 subunit sequence of 443 amino acids. The proposed amino acid sequence exhibits 63 and 61% homology to the previously-reported human ϱ1 and rat ϱ2 sequences, respectively. Northern blot analysis demonstrated the expression of mRNA for ϱ3 subunit in retina.  相似文献   

16.
17.
Gamma‐aminobutyric acid (GABA) is an important metabolite which functions in plant growth, development, and stress responses. However, its role in plant defense and how it is regulated are largely unknown. Here, we report a detailed analysis of GABA induction during the resistance response to Pseudomonas syringae in Arabidopsis thaliana. While searching for the mechanism underlying the pathogen‐responsive mitogen‐activated protein kinase (MPK)3/MPK6 signaling cascade in plant immunity, we found that activation of MPK3/MPK6 greatly induced GABA biosynthesis, which is dependent on the glutamate decarboxylase genes GAD1 and GAD4. Inoculation with Pseudomonas syringae pv tomato DC3000 (Pst) and Pst‐avrRpt2 expressing the avrRpt2 effector gene induced GAD1 and GAD4 gene expression and increased the levels of GABA. Genetic evidence revealed that GAD1, GAD2, and GAD4 play important roles in both GABA biosynthesis and plant resistance in response to Pst‐avrRpt2 infection. The gad1/2/4 triple and gad1/2/4/5 quadruple mutants, in which the GABA levels were extremely low, were more susceptible to both Pst and Pst‐avrRpt2. Functional loss of MPK3/MPK6, or their upstream MKK4/MKK5, or their downstream substrate WRKY33 suppressed the induction of GAD1 and GAD4 expression after Pst‐avrRpt2 treatment. Our findings shed light on both the regulation and role of GABA in the plant immunity to a bacterial pathogen.  相似文献   

18.
Propanidid is an intravenous anesthetic with transient action and rapid recovery features, but it is clinically unacceptable due to its side effects. AZD-3043, an analog of propanidid with the methoxy group substituted by the ethoxy group, has become the focus of recent development efforts. Although propanidid and AZD-3043 are known to act by potentiating the γ-aminobutyric acid type A receptors (GABAARs), their action sites and binding modes in the recognition of target proteins still remain unclear. In this study, molecular docking and ONIOM calculations were performed to explore the possible binding sites and binding modes of propanidid and AZD-3043 with the GABAAR. The predicted active region located in the transmembrane domain (TMD) of GABAAR was identified as the most favorable binding site for propanidid and AZD-3043, with the highest docking score (?39.69 and ?39.44 kcal/mol, respectively) and the largest binding energy (?88.478 and ?78.439 kcal/mol, respectively). The important role of amino acids Asp245, Asp424, Asp425, Arg428, Phe307, and Ser308 in determining the binding modes of propanidid or AZD-3043 with GABAAR was revealed. The detailed molecular interactions between propanidid and AZD-3043 and the GABAAR were revealed for the first time. This could improve our understanding of the action mechanism of general anesthetics and will be helpful for the design of more potential lead-like molecules.  相似文献   

19.

Background

Central administration of γ-amino butyric acid (GABA) induces lower body temperature in animals in hot ambient air. However, it is still unknown whether oral GABA administration affects temperature regulation at rest in a hot environment in humans. Therefore, in the present study, we specifically hypothesized that systemic administration of GABA in humans would induce hypothermia in a hot environment and that this response would be observed in association with decreased heat production.

Methods

Eight male participants drank a 200-ml sports drink with 1 g of GABA (trial G) or without GABA (trial C), then rested for 30 minutes in a sitting position in a hot environment (ambient air temperature 33°C, relative humidity 50%).

Results

We found that changes in esophageal temperature from before drinking the sports drink were lower in trial G than in trial C (-0.046 ± 0.079°C vs 0.001 ± 0.063°C; P < 0.05), with lower heat production calculated by oxygen consumption (41 ± 5 W/m2 vs 47 ± 8 W/m2; P < 0.05).

Conclusions

In this study, we have demonstrated that a single oral administration of GABA induced a larger decrease in body core temperature compared to a control condition during rest in a hot environment and that this response was concomitant with a decrease in total heat production.  相似文献   

20.
Outside-out patches were excised from the membrane of the deep extensor abdominal muscle (DEAM), containing γ-aminobutyric acid (GABA)- activated chloride channels, in the crayfish Astacus astacus. GABA and isoflurane (iso) were applied in pulses by a liquid filament switch, and their effects on the GABA-elicited chloride currents were investigated. Application of iso alone elicited no current responses and pre-application of iso prior to GABA had no effects on the GABA-elicited current. Co-application of GABA and iso resulted in a reduction of the initial chloride current and subsequent decline of the current to a steady state, indicating that iso binds to the receptor after GABA has bound. Recovery currents at the end of the co-application pulse, their amplitudes decreasing with pulse duration, confirmed this suggestion. Open-time distributions of the blocked channel showed a shift of the long open-time towards a new time constant, indicating a second block mechanism via the long open state A5Os of the channel. Removal of GABA and iso after reaching the equilibrium state of the block resulted in recovery currents containing exclusively openings from the long open state A5Os, confirming the suggestion of an open channel block only at one of the open states. Accepted: 24 June 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号