首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Destabilization of cortical dendrites and spines by BDNF.   总被引:12,自引:0,他引:12  
Particle-mediated gene transfer and two-photon microscopy were used to monitor the behavior of dendrites of individual cortical pyramidal neurons coexpressing green fluorescent protein (GFP) and brain-derived neurotrophic factor (BDNF). While the dendrites and spines of neurons expressing GFP alone grew modestly over 24-48 hr, coexpressing BDNF elicited dramatic sprouting of basal dendrites, accompanied by a regression of dendritic spines. Compared to GFP-transfected controls, the newly formed dendrites and spines were highly unstable. Experiments utilizing Trk receptor bodies, K252a, and overexpression of nerve growth factor (NGF) demonstrated that these effects were mediated by secreted BDNF interacting with extracellular TrkB receptors. Thus, BDNF induces structural instability in dendrites and spines, which, when restricted to particular portions of a dendritic arbor, may help translate activity patterns into specific morphological changes.  相似文献   

2.
Here, using a genetic approach, we dissect the roles of EphB receptor tyrosine kinases in dendritic spine development. Analysis of EphB1, EphB2, and EphB3 double and triple mutant mice lacking these receptors in different combinations indicates that all three, although to varying degrees, are involved in dendritic spine morphogenesis and synapse formation in the hippocampus. Hippocampal neurons lacking EphB expression fail to form dendritic spines in vitro and they develop abnormal spines in vivo. Defective spine formation in the mutants is associated with a drastic reduction in excitatory glutamatergic synapses and the clustering of NMDA and AMPA receptors. We show further that a kinase-defective, truncating mutation in EphB2 also results in abnormal spine development and that ephrin-B2-mediated activation of the EphB receptors accelerates dendritic spine development. These results indicate EphB receptor cell autonomous forward signaling is responsible for dendritic spine formation and synaptic maturation in hippocampal neurons.  相似文献   

3.
The PACSIN (protein kinase C and casein kinase 2 substrate in neurons) adapter proteins couple components of the clathrin-mediated endocytosis machinery with regulators of actin polymerization and thereby regulate the surface expression of specific receptors. The brain-specific PACSIN 1 is enriched at synapses and has been proposed to affect neuromorphogenesis and the formation and maturation of dendritic spines. In studies of how phosphorylation of PACSIN 1 contributes to neuronal function, we identified serine 358 as a specific site used by casein kinase 2 (CK2) in vitro and in vivo. Phosphorylated PACSIN 1 was found in neuronal cytosol and membrane fractions. This localization could be modulated by trophic factors such as brain-derived neurotrophic factor (BDNF). We further show that expression of a phospho-negative PACSIN 1 mutant, S358A, or inhibition of CK2 drastically reduces spine formation in neurons. We identified a novel protein complex containing the spine regulator Rac1, its GTPase-activating protein neuron-associated developmentally regulated protein (NADRIN), and PACSIN 1. CK2 phosphorylation of PACSIN 1 leads to a dissociation of the complex upon BDNF treatment and induces Rac1-dependent spine formation in dendrites of hippocampal neurons. These findings suggest that upon BDNF signaling PACSIN 1 is phosphorylated by CK2 which is essential for spine formation.  相似文献   

4.
Dissociated cultured rat hippocampal pyramidal neurons respond to estradiol with a time-dependent, twofold increase in density of their dendritic spines. This effect is mediated by an estrogen receptor, probably of the alpha nuclear receptor type. In searching for the molecular mechanisms leading from the initial activation of the estrogen receptor to the final formation of new dendritic spines, we found that estradiol acts on GABAergic interneurons expressing the estrogen receptor by decreasing their inhibitory tone. In culture, this is assumed to cause a shift in the balance between excitation and inhibition toward enhanced excitation, overactivation of the pyramidal neurons, and subsequent formation of novel dendritic spines. The action of estradiol on spine formation is mediated by phosphorylation of cyclic AMP response element binding protein in the pyramidal neurons and is blocked when inhibition is enhanced by diazepam and when excitation is blocked by tetrodotoxin. Progesterone blocks the effect of estradiol on dendritic spines through its conversion to tetrahydroprogesterone, which enhances GABAergic inhibition. Subsequent to formation of novel dendritic spines, there is an increase in the density of glutamatergic receptors in the affected cells, an increase in the cellular calcium response to glutamate, and an increase in network synaptic activity among the cultured neurons.  相似文献   

5.
Dendritic spines are actin-rich protrusions that establish excitatory synaptic contacts with surrounding neurons. Reorganization of the actin cytoskeleton is critical for the development and plasticity of dendritic spines, which is the basis for learning and memory. Rho family GTPases are emerging as important modulators of spines and synapses, predominantly through their ability to regulate actin dynamics. Much less is known, however, about the function of guanine nucleotide exchange factors (GEFs), which activate these GTPases, in spine and synapse development. In this study we show that the Rho family GEF Asef2 is found at synaptic sites, where it promotes dendritic spine and synapse formation. Knockdown of endogenous Asef2 with shRNAs impairs spine and synapse formation, whereas exogenous expression of Asef2 causes an increase in spine and synapse density. This effect of Asef2 on spines and synapses is abrogated by expression of GEF activity-deficient Asef2 mutants or by knockdown of Rac, suggesting that Asef2-Rac signaling mediates spine development. Because Asef2 interacts with the F-actin-binding protein spinophilin, which localizes to spines, we investigated the role of spinophilin in Asef2-promoted spine formation. Spinophilin recruits Asef2 to spines, and knockdown of spinophilin hinders spine and synapse formation in Asef2-expressing neurons. Furthermore, inhibition of N-methyl-d-aspartate receptor (NMDA) activity blocks spinophilin-mediated localization of Asef2 to spines. These results collectively point to spinophilin-Asef2-Rac signaling as a novel mechanism for the development of dendritic spines and synapses.  相似文献   

6.
Previous studies have shown that sensory and motor experiences play an important role in the remodeling of dendritic spines of layer 5 (L5) pyramidal neurons in the cortex. In this study, we examined the effects of sensory deprivation and motor learning on dendritic spine remodeling of layer 2/3 (L2/3) pyramidal neurons in the barrel and motor cortices. Similar to L5 pyramidal neurons, spines on apical dendrites of L2/3 pyramidal neurons are plastic during development and largely stable in adulthood. Sensory deprivation via whisker trimming reduces the elimination rate of existing spines without significant effect on the rate of spine formation in the developing barrel cortex. Furthermore, we show that motor training increases the formation and elimination of dendritic spines in the primary motor cortex. Unlike L5 pyramidal neurons, however, there is no significant difference in the rate of spine formation between sibling dendritic branches of L2/3 pyramidal neurons. Our studies indicate that sensory and motor learning experiences have important impact on dendritic spine remodeling in L2/3 pyramidal neurons. They also suggest that the rules governing experience‐dependent spine remodeling are largely similar, but not identical, between L2/3 and L5 pyramidal neurons. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 277–286, 2016  相似文献   

7.
We previously reported that the cell surface proteoglycan syndecan-2 can induce dendritic spine formation in hippocampal neurons. We demonstrate here that the EphB2 receptor tyrosine kinase phosphorylates syndecan-2 and that this phosphorylation event is crucial for syndecan-2 clustering and spine formation. Syndecan-2 is tyrosine phosphorylated and forms a complex with EphB2 in mouse brain. Dominant-negative inhibition of endogenous EphB receptor activities blocks clustering of endogenous syndecan-2 and normal spine formation in cultured hippocampal neurons. This is the first evidence that Eph receptors play a physiological role in dendritic spine morphogenesis. Our observations suggest that spine morphogenesis is triggered by the activation of Eph receptors, which causes tyrosine phosphorylation of target molecules, such as syndecan-2, in presumptive spines.  相似文献   

8.
Dendritic spines receive most excitatory inputs in the neocortex and are morphologically very diverse. Recent evidence has demonstrated linear relationships between the size and length of dendritic spines and important features of its synaptic junction and time constants for calcium compartmentalisation. Therefore, the morphologies of dendritic spines can be directly interpreted functionally. We sought to explore whether there were potential differences in spine morphologies between areas and species that could reflect potential functional differences. For this purpose, we reconstructed and measured thousands of dendritic spines from basal dendrites of layer III pyramidal neurons from mouse temporal and occipital cortex and from human temporal cortex. We find systematic differences in spine densities, spine head size and spine neck length among areas and species. Human spines are systematically larger and longer and exist at higher densities than those in mouse cortex. Also, mouse temporal spines are larger than mouse occipital spines. We do not encounter any correlations between the size of the spine head and its neck length. Our data suggests that the average synaptic input is modulated according to cortical area and differs among species. We discuss the implications of these findings for common algorithms of cortical processing.  相似文献   

9.
When BDNF binds to its receptors, TrkB and p75NTR, the BDNF-receptor complex is endocytosed and trafficked to the cell body for downstream signal transduction, which plays a critical role in neuronal functions. Huntingtin-associated protein 1 (HAP1) is involved in trafficking of vesicles intracellularly and also interacts with several membrane proteins including TrkB. Although it has been known that HAP1 has functions in vesicular trafficking and receptor stabilisation, it is not yet established whether HAP1 has a role in BDNF and its receptor endocytosis. In the present study, we found that HAP1 is in an interacting complex with p75NTR, TrkB and BDNF, especially newly endocytosed BDNF. BDNF and TrkB internalisation is abolished in HAP1 knock-out (KO) cortical neurons. TrkB downstream signalling pathways such as ERK, Akt and PLCγ-1 are also impaired in HAP1 KO cortical neurons upon BDNF stimulation. Proliferation of cerebellar granule cells is also impaired in cell culture and cerebellum of HAP1 KO mice. Our findings suggest that HAP1 may play a key role in BDNF and its receptor endocytosis and may promote neuronal survival and proliferation.  相似文献   

10.
ER-bound PTP1B is expressed in hippocampal neurons, and accumulates among neurite contacts. PTP1B dephosphorylates ß-catenin in N-cadherin complexes ensuring cell-cell adhesion. Here we show that endogenous PTP1B, as well as expressed GFP-PTP1B, are present in dendritic spines of hippocampal neurons in culture. GFP-PTP1B overexpression does not affect filopodial density or length. In contrast, impairment of PTP1B function or genetic PTP1B-deficiency leads to increased filopodia-like dendritic spines and a reduction in mushroom-like spines, while spine density is unaffected. These morphological alterations are accompanied by a disorganization of pre- and post-synapses, as judged by decreased clustering of synapsin-1 and PSD-95, and suggest a dynamic synaptic phenotype. Notably, levels of ß-catenin-Tyr-654 phosphorylation increased ∼5-fold in the hippocampus of adult PTP1B−/− (KO) mice compared to wild type (WT) mice and this was accompanied by a reduction in the amount of ß-catenin associated with N-cadherin. To determine whether PTP1B-deficiency alters learning and memory, we generated mice lacking PTP1B in the hippocampus and cortex (PTP1Bfl/fl–Emx1-Cre). PTP1Bfl/fl–Emx1-Cre mice displayed improved performance in the Barnes maze (decreased time to find and enter target hole), utilized a more efficient strategy (cued), and had better recall compared to WT controls. Our results implicate PTP1B in structural plasticity within the hippocampus, likely through modulation of N-cadherin function by ensuring dephosphorylation of ß-catenin on Tyr-654. Disruption of hippocampal PTP1B function or expression leads to elongation of dendritic filopodia and improved learning and memory, demonstrating an exciting novel role for this phosphatase.  相似文献   

11.
12.
The ε4 allele of the gene that encodes apolipoprotein E (APOE4) is the greatest genetic risk factor for Alzheimer''s disease (AD), while APOE2 reduces AD risk, compared to APOE3. The mechanism(s) underlying the effects of APOE on AD pathology remains unclear. In vivo, dendritic spine density is lower in APOE4-targeted replacement (APOE-TR) mice compared with APOE2- and APOE3-TR mice. To investigate whether this apoE4-induced decrease in spine density results from alterations in the formation or the loss of dendritic spines, the effects of neuron age and apoE isoform on the total number and subclasses of spines were examined in long-term wild-type neurons co-cultured with glia from APOE2-, APOE3- and APOE4-TR mice. Dendritic spine density and maturation were evaluated by immunocytochemistry via the presence of drebrin (an actin-binding protein) with GluN1 (NMDA receptor subunit) and GluA2 (AMPA receptor subunit) clusters. ApoE isoform effects were analyzed via a method previously established that identifies phases of spine formation (day-in-vitro, DIV10–18), maintenance (DIV18–21) and loss (DIV21–26). In the formation phase, apoE4 delayed total spine formation. During the maintenance phase, the density of GluN1+GluA2 spines did not change with apoE2, while the density of these spines decreased with apoE4 compared to apoE3, primarily due to the loss of GluA2 in spines. During the loss phase, total spine density was lower in neurons with apoE4 compared to apoE3. Thus, apoE4 delays total spine formation and may induce early synaptic dysfunction via impaired regulation of GluA2 in spines.  相似文献   

13.
The maturation and maintenance of dendritic spines depends on neuronal activity and protein synthesis. One potential mechanism involves mammalian target of rapamycin, which promotes protein synthesis through phosphorylation of eIF4E-binding protein and p70 ribosomal S6 kinase 1 (S6K). Upon extracellular stimulation, mammalian target of rapamycin phosphorylates S6K at Thr-389. S6K also undergoes phosphorylation at other sites, including four serine residues in the autoinhibitory domain. Despite extensive biochemical studies, the importance of phosphorylation in the autoinhibitory domain in S6K function remains unresolved, and its role has not been explored in the cellular context. Here we demonstrated that S6K in neuron was phosphorylated at Ser-411 within the autoinhibitory domain by cyclin-dependent kinase 5. Ser-411 phosphorylation was regulated by neuronal activity and brain-derived neurotrophic factor (BDNF). Knockdown of S6K in hippocampal neurons by RNAi led to loss of dendritic spines, an effect that mimics neuronal activity blockade by tetrodotoxin. Notably, coexpression of wild type S6K, but not the phospho-deficient S411A mutant, could rescue the spine defects. These findings reveal the importance of cyclin-dependent kinase 5-mediated phosphorylation of S6K at Ser-411 in spine morphogenesis driven by BDNF and neuronal activity.  相似文献   

14.
Dendritic filopodia are small protrusions on the surface of neuronal dendrites that transform into dendritic spines upon synaptic contact with axon terminals. The formation of dendritic spines is a critical aspect of synaptic development. Dendritic spine morphogenesis is characterized by filopodia shortening followed by the formation of mature mushroom-shaped spines. Here we show that activation of the EphB receptor tyrosine kinases in cultured hippocampal neurons by their ephrinB ligands induces morphogenesis of dendritic filopodia into dendritic spines. This appears to occur through assembly of an EphB-associated protein complex that includes focal adhesion kinase (FAK), Src, Grb2, and paxillin and the subsequent activations of FAK, Src, paxillin, and RhoA. Furthermore, Cre-mediated knock-out of loxP-flanked fak or RhoA inhibition blocks EphB-mediated morphogenesis of dendritic filopodia. Finally, EphB-mediated RhoA activation is disrupted by FAK knock-down. These data suggest that EphB receptors are upstream regulators of FAK in dendritic filopodia and that FAK-mediated RhoA activation contributes to assembly of actin filaments in dendritic spines.  相似文献   

15.
Mutations in presenilins are the major cause of familial Alzheimer's disease (FAD), leading to impairments of memory and synaptic plasticity followed by age-dependent neurodegeneration. Presenilins are the catalytic subunits of γ-secretase, which itself is critically involved in the processing of amyloid precursor protein to release neurotoxic amyloid β (Aβ). Besides Aβ generation, there is growing evidence that presenilins play an essential role in the formation and maintenance of synapses. To further elucidate the effect of presenilin1 (PS1) on synapses, we performed longitudinal in vivo two-photon imaging of dendritic spines in the somatosensory cortex of transgenic mice over-expressing either human wild-type PS1 or the FAD-mutated variant A246E (FAD-PS1). Interestingly, the consequences of transgene expression were different in two subtypes of cortical dendrites. On apical layer 5 dendrites, we found an enhanced spine density in both mice over-expressing human wild-type presenilin1 and FAD-PS1, whereas on basal layer 3 dendrites only over-expression of FAD-PS1 increased the spine density. Time-lapse imaging revealed no differences in kinetically distinct classes of dendritic spines nor was the shape of spines affected. Although γ-secretase-dependent processing of synapse-relevant proteins seemed to be unaltered, higher expression levels of ryanodine receptors suggest a modified Ca(2+) homeostasis in PS1 over-expressing mice. However, the conditional depletion of PS1 in single cortical neurons had no observable impact on dendritic spines. In consequence, our results favor the view that PS1 influences dendritic spine plasticity in a gain-of-function but γ-secretase-independent manner.  相似文献   

16.
The development of nervous system connectivity depends upon the arborization of dendritic fields and the stabilization of dendritic spine synapses. It is well established that neuronal activity and the neurotrophin BDNF modulate these correlated processes. However, the downstream mechanisms by which these extrinsic signals regulate dendritic development and spine stabilization are less well known. Here we report that a substrate of BDNF signaling, the Ankyrin Repeat‐rich Membrane Spanning (ARMS) protein or Kidins220, plays a critical role in the branching of cortical and hippocampal dendrites and in the turnover of cortical spines. In the barrel somatosensory cortex and the dentate gyrus, regions where ARMS/Kidins220 is highly expressed, no difference in the complexity of dendritic arbors was observed in 1‐month‐old adolescent ARMS/Kidins220+/? mice compared to wild‐type littermates. However, at 3 months of age, young adult ARMS/Kidins220+/? mice exhibited decreased dendritic complexity. This suggests that ARMS/Kidins220 does not play a significant role in the initial formation of dendrites but, rather, is involved in the refinement or stabilization of the arbors later in development. In addition, at 1 month of age, the rate of spine elimination was higher in ARMS/Kidins220+/? mice than in wild‐type mice, suggesting that ARMS/Kidins220+/? levels regulate spine stability. Taken together, these data suggest that ARMS/Kidins220 is important for the growth of dendritic arbors and spine stability during an activity‐ and BDNF‐dependent period of development. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 2009  相似文献   

17.
Neuregulins play a major role in the formation and stabilization of neuromuscular junctions, and are produced by both motor neurons and muscle. Although the effects and mechanism of neuregulins on skeletal muscle (e.g. regulation of acetylcholine receptor expression) have been studied extensively, the effects of neuregulins on motor neurons remain unknown. We report that neuregulin-1beta (NRGbeta1) inhibited apoptosis of rat motor neurons for up to 7 days in culture by a phosphatidylinositol 3 kinase-dependent pathway and synergistically enhanced motor neuron survival promoted by glial-derived neurotrophic factor (GDNF). However, binding of neurotrophins, including brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), to the p75 neurotrophin receptor (p75NTR) abolished the neuregulin anti-apoptotic effect on motor neurons. Inhibitors of the c-Jun N-terminal kinase (JNK) mitogen-activated protein kinase prevented motor neuron death caused by co-incubation of NRGbeta1 and BDNF or NGF, as well as by trophic factor deprivation. Motor neuron apoptosis resulting from both trophic factor deprivation and exposure to NRGbeta1 plus neurotrophins required the induction of neuronal nitric oxide synthase and peroxynitrite formation. Because motor neurons express both p75NTR and neuregulin erbB receptors during the period of embryonic programmed cell death, motor neuron survival may be the result of complex interactions between trophic and death factors, which may be the same molecules acting in different combinations.  相似文献   

18.
The serine/threonine kinase p21-activated kinase 1 (Pak1) modulates actin and microtubule dynamics. The neuronal functions of Pak1, despite its abundant expression in the brain, have not yet been fully delineated. Previously, we reported that Pak1 mediates initiation of dendrite formation. In the present study, the role of Pak1 in dendritogenesis, spine formation and maintenance was examined in detail. Overexpression of constitutively active-Pak1 in immature cortical neurons increased not only the number of the primary branching on apical dendrites but also the number of basal dendrites. In contrast, introduction of dominant negative-Pak caused a reduction in both of these morphological features. The length and the number of secondary apical branch points of dendrites were not significantly different in cultured neurons expressing these mutant forms, suggesting that Pak1 plays a role in dendritogenesis. Pak1 also plays a role in the formation and maintenance of spines, as evidenced by the altered spine morphology, resulting from overexpression of mutant forms of Pak1 in immature and mature hippocampal neurons. Thus, our results provide further evidence of the key role of Pak1 in the regulation of dendritogenesis, dendritic arborization, the spine formation, and maintenance.  相似文献   

19.
Previously, a coculture system of accessory olfactory bulb (AOB) neurons and vomeronasal (VN) neurons was established for studying the functional roles of AOB neurons in pheromonal signal processing. In this study, the effect of VN neurons on the development of AOB neurons was examined in a coculture system. Spine density was quantitatively measured for various culture periods of 21, 28, 36, and 42 days in vitro. The densities of dendritic spines were lower in the coculture than in single culture for all periods in vitro. Synapse formation on spines was analyzed immunocytochemically using an anti-synaptophysin antibody. The ratio of the density of synaptophysin-immunopositive spine/total spine density was larger in the coculture than in the single culture. The volume of spine head was larger in the coculture than in single culture. These changes were not observed in the coculture in which there was no physical contact between AOB neurons and VN neurons. These observations suggest that synapse formation on the spines of AOB neurons is modified by physical contact with VN neurons.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号