首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The theoretical behavior of a hypothetical fluid cell in contact with flat and curved solid surfaces is discussed from the point of view of surface tension. An equation is derived for calculating the equilibrium position of the cell on a flat surface in terms of the surface tensions between the cell and the plasma, the plasma and the solid surface, and the solid surface and the cell. It is shown that the same equilibrium is predicted from consideration of the contact angle between the cell and the solid body. The relative surface energy has been calculated at various stages in the ingestion of a solid particle by a fluid cell four times as large in diameter, and it is thus shown that no particle will be ingested until the surface tensions are such that the cell would spread to infinity on a flat surface of the same substance. Here again the same equilibrium is predicted from considerations of the contact angle. The adhesiveness of blood cells to solid substances is shown to be a pure surface tension phenomenon, but in most reactions between living cells and solid bodies the fluidity of the protoplasm is also a factor of prime importance. The frequent occurrence of adhesiveness as a property of cells in contact with solid bodies is due in part to the fact that, by so adhering, the surface area of the cell not touching the solid is decreased.  相似文献   

2.
Adhesion of leukocytes and platelets to solid substrates of different surface tensions and hence different wettability is studied from a thermodynamic point of view. A simple thermodynamic model predicts that a cellular adhesion should increase with increasing surface tension of the solid substrate if the surface tension of the medium in which the cells are suspended is lower than the surface tension of the cells. If the surface tension of the suspending medium is higher than that of the cells, the opposite behavior is predicted. These predictions are borne out completely by neutrophil adhesion tests, where the surface tension of the aqueous suspending medium is varied by addition of dimethyl sulfoxide (DMSO). Platelet adhesion experiments also confirm these predictions, the only difference being that surface tensions of the suspending medium above that of the platelets cannot be realized, owing to exudation of surface active solutes from the platelets. Utilization of the thermodynamic prediction that cellular adhesion should become independent of the surface tension of the substrate when the surface tensions of the cells and that of the suspending medium are equal leads to a value of the surface tension of neutrophils of 69.0 erg/cm(2), in excellent agreement with the value obtained from contact angles measured on layers of cells.  相似文献   

3.
In this paper we calculate surface conformation and deformation free energy associated with the incorporation of gramicidin channels into phospholipid bilayer membranes. Two types of membranes are considered. One is a relatively thin solvent-free membrane. The other is a thicker solvent-containing membrane. We follow the approach used for the thin membrane case by Huang (1986) in that we use smectic liquid crystal theory to evaluate the free energy associated with distorting the membrane to other than a flat configuration. Our approach is different from Huang, however, in two ways. One is that we include a term for surface tension, which Huang did not. The second is that one of our four boundary conditions for solving the fourth-order differential equation describing the free energy of the surface is different from Huang's. The details of the difference are described in the text. Our results confirm that for thin membranes Huang's neglect of surface tension is appropriate. However, the precise geometrical form that we calculate for the surface of the thin membrane in the region of the gramicidin channel is somewhat different from his. For thicker membranes that have to deform to a greater extent to accommodate the channel, we find that the contribution of surface tension to the total energy in the deformed surface is significant. Computed results for the shape of the deformed surface, the total energy in the deformed surface, and the contributions of different components to the total energy, are presented for the two types of membranes considered. These results may be significant for understanding the mechanisms of dimer formation and breakup, and the access resistance for ions entering gramicidin channels.  相似文献   

4.
We characterized the membrane-associated form of lymphotoxin (surface LT) on the activated II-23.D7 T cell hybridoma. Antibodies to rLT precipitated both surface LT and a distinct 33-kDa glycoprotein (p33). Because p33 and surface LT were antigenically unrelated, their coprecipitation suggested a physical association of p33 and surface LT on the membrane. Pulse-chase analysis indicated that LT and p33 associate with each other early in the LT biosynthetic pathway, precluding the possibility that LT is secreted and bound to p33 or a surface receptor. Furthermore, no p33 was associated with the secreted form of LT. Isoelectric focusing of surface LT and p33 under nondenaturing and denaturing conditions confirmed that surface LT and p33 existed as a complex. Treatment of cells with a high concentration of salt or with acid indicated that surface LT is a peripheral membrane protein. Although secreted LT is a homologous trimer, protein cross-linking studies revealed that surface LT existed as a monomer associated with a dimer of p33. Together the results demonstrate a novel mechanism for stable membrane expression of LT by activated T cells.  相似文献   

5.
We have recently described a cell type-specific surface (SF) antigen that is deleted in chick fibroblasts transformed by Rous sarcoma virus. SF antigen is a major surface component and makes up about 0.5% of the total protein on normal cultured fibroblasts. The antigen is shed from normal cells and is present in circulation (serum, plasma), and in vivo, also, in tissue boundary membranes. The molecular equivalents of both cellular and serum SF antigen are distinct, large polypeptides, one of which (SF210, MW 210,000) is glycosylated and, on the cell surface, highly susceptible to proteases and accessible to surface iodination. Immunofluorescence and scanning electron microscopy have indicated that the antigen is located in fibrillar structures of the cell surface, membrane ridges, and processes. Human SF antigen is present in human fibroblasts and in human serum. We have recently shown that human SF antigen is identical to what has been known as the “cold-insoluble globulin” and that it shows affinity toward fibrin and fibrinogen. Our results also indicate that loss of the transformation-sensitive surface proteins is due not to loss of synthesis but to lack of insertion of the protein in the neoplastic cell surface. Both normal and transformed cells produce the SF antigen, but the latter do not retain it in the cell surface. The loss of SF antigen, a major cell surface component, from malignant cells creates an impressive difference between the surface properties of normal and malignant cells. The possible significance of SF antigen to the integrity of the normal membrane and its interaction to surrounding structures is discussed.  相似文献   

6.
This paper reports the adsorption of Bovine Serum Albumin (BSA) onto Dielectric Barrier Discharge (DBD) processed Poly(methyl methacrylate) (PMMA) surfaces by a Quartz Crystal Microbalance with Dissipation monitoring (QCM-D) technique. The purpose is to study the influence of DBD processing on the nature and scale of BSA adsorption on PMMA surface in vitro. It was observed that DBD processing improves the surface wettability of PMMA film, a fact attributable to the changes in surface chemistry and topography. Exposure of the PMMA to Phosphate Buffed Saline (PBS) solution in the QCM-D system resulted in surface adsorption which reaches an equilibrium after about 30 minutes for pristine PMMA, and 90 minutes for processed PMMA surface. Subsequent injection of BSA in PBS indicated that the protein is immediately adsorbed onto the PMMA surface. It was revealed that adsorption behaviour of BSA on pristine PMMA differs from that on processed PMMA surface. A slower adsorption kinetics was observed for pristine PMMA surface, whilst a quick adsorption kinetics for processed PMMA. Moreover, the dissipation shift of protein adsorption suggested that BSA forms a more rigid structure on pristine PMMA surface that on processed surface. These data suggest that changes in wettability and attendant chemical properties and surface texture of the PMMA surface may play a significant role in BSA adsorption process.  相似文献   

7.
The origin of the difference between the equilibrium (affinity) constants of ligand-receptor binding in bulk solution and at a solid-solution interface is discussed in terms of Gibbsian interfacial thermodynamics. It results that the difference is determined by the surface work that the ligand-receptor interaction spends to accommodate surface binding, and in turn that the value of the surface equilibrium constant (strongly) depends on the surface that confines the event. This framework consistently describes a wide set of experimental observations of DNA surface hybridization, correctly predicting that within the surface work window for DNA hybridization, that ranges from -90 to 75 kJ mol(-1), the ratio between surface and bulk equilibrium constants ranges from 10(-16) to 10(13), spanning 29 orders of magnitude.  相似文献   

8.
The formation of the primitive endoderm layer on the surface of the inner cell mass is one of the earliest epithelial morphogenesis in mammalian embryos. In mouse embryos deficient of Disabled-2 (Dab2), the primitive endoderm cells lose the ability to position on the surface, resulting in defective morphogenesis. Embryonic stem cells lacking Dab2 are also unable to position on the surface of cell aggregates and fail to form a primitive endoderm outer layer in the embryoid bodies. The cellular function of Dab2, a cargo-selective adaptor, in mediating endocytic trafficking of clathrin-coated vesicles is well established. We show here that Dab2 mediates directional trafficking and polarized distribution of cell surface proteins such as megalin and E-cadherin and propose that loss of polarity is the underlying mechanism for the loss of epithelial cell surface positioning in Dab2-deficient embryos and embryoid bodies. Thus, the findings indicate that Dab2 is a surface positioning gene and suggest a novel mechanism of epithelial cell surface targeting.  相似文献   

9.
Adhesion of leukocytes and platelets to solid substrates of different surface tensions and hence different wettability is studied from a thermodynamic point of view. A simple thermodynamic model predicts that cellular adhesion should increase with increasing surface tension of the solid substrate if the surface tension of the medium in which the cells are suspended is lower than the surface tension of the cells. If the surface tension of the suspending medium is higher than that of the cells, the opposite behavior is predicted. These predictions are borne out completely by neutrophil adhesion tests, where the surface tension of the aequeous suspending medium is varied by addition of dimethyl sulfoxide (DMSO). Platelet adhesion experiments also confirm these predictions, the only difference being that surface tensions of the suspending medium above that of the platelets cannot be realized, owing to exudation of surface active solutes from the platelets. Utilization of the thermodynamic prediction that cellular adhesion should become independent of the surface tension of the substrate when the surface tensions of the cells and that of the suspending medium are equal leads to a value of the surface tension of neutrophils of 69.0 erg/cm2,† in excellent agreement with the value obtained from contact angles measured on layers of cells.  相似文献   

10.
The behavior of phosphatidylcholine monolayers at the air/water interface was studied by measuring their surface isotherm, surface potential, surface viscosity, and rate of hydrolysis by the dimeric phospholipase A2 from the venom of Crotalus atrox. The monolayers showed typical liquid-expanded behavior. In this phase, the surface potential was linearly dependent on surface concentration and extrapolated at zero concentration to a value characteristic of a liquid hydrocarbon/water interface. The rate of the reaction was measured by monitoring changes in area at constant surface pressure for 1,2-dioctanoyl- and 1,2-didecanoyl-3-sn-phosphatidylcholines, and by monitoring changes in surface potential for 1,2-dimyristoyl-, 1,2-dipalmitoyl-, 1-palmitoyl-2-oleoyl-, and 1-oleoyl-2-palmitoyl-sn-glycero-3-phosphocholines. The enzymatic hydrolysis is first order with respect to the enzyme-calcium complex which forms with a Kd = 1.5 mM. A mechanism is proposed to account for the dependency of the reaction rates on the surface concentration of the substrate. We postulate that the rate-limiting step is the decomposition of a quaternary complex formed from two phospholipid molecules, one calcium ion and one dimeric enzyme. The rate is independent of the surface pressure per se; addition of inert lipids to a monolayer at constant area, and hence constant surface concentration of the substrate, increases the surface pressure without changing the surface density of the substrate yielding maximal enzymatic rate. The enzyme is specific for loosely packed substrate molecules in the liquid-expanded state: transition into the liquid-condensed state or compression of the liquid-expanded layer beyond 80 A2/phospholipid strongly inhibits the enzymatic reaction. Our results show that surface recognition is a direct consequence of a bifunctional active site since it is only at a phospholipid surface that the distance between two substrate molecules is optimal for forming a catalytically competent enzyme-Ca2+-(substrate)2 complex.  相似文献   

11.
The appearance of Fas receptor at the surface of pancreatic beta-cells affected by progressive insulitis strongly suggests that Fas-mediated beta-cell apoptosis plays an important role in the pathogenesis of type 1 diabetes. In support of this concept, the present study has shown that islet cells from NOD mice and the beta-cell line NIT-1 respond to the proinflammatory cytokines IL-1beta and IFN-gamma with Fas surface expression in a dose- and time-dependent manner. Moreover, the prevention of cytokine-induced surface Fas expression by actinomycin D, cycloheximide, and brefeldin A demonstrated that trafficking of Fas to the beta-cell surface requires RNA and protein synthesis and, in addition is critically dependent on intracellular protein transport. Compared with total cellular Fas protein, the amount of Fas at the cell surface was relatively small and indicated that Fas is preferentially expressed in cytoplasmic compartments of NIT-1 cells. It is concluded that inflammatory insults specifically induce translocation of Fas to the beta-cell surface and that interference with cell surface Fas expression is a new strategy to improve beta-cell survival in inflamed islets.  相似文献   

12.
L Weiss 《Cell biophysics》1991,18(2):73-79
Direct and indirect, in vivo and in vitro observations are in accord with the hypothesis that as a consequence of their deformation within capillaries, cancer cells undergo sphere-to-cylinder shape-transformations that create a demand for increased surface area. When this demand cannot be met by apparent increases in surface area accomplished by nonlethal, surface "unfolding," the cell surface membrane is stretched; if expansion results in more than a 4% increase in true surface area, the membrane ruptures, resulting in cancer cell death. It is suggested that this deformation-driven process is an important factor in accounting for the rapid death of circulating cancer cells that have been trapped in the microvasculature. Therefore, this mechanism is thought to make a significant contribution to metastatic inefficiency by acting as a potent rate-regulator for hematogenous metastasis.  相似文献   

13.
The Ca(2+)-dependent cell adhesion molecule uvomorulin is a transmembrane glycoprotein that functions at the cell surface to regulate epithelial cell recognition and adhesion. We have investigated the temporal and spatial regulation of uvomorulin biosynthesis and cell surface expression in Madin-Darby canine kidney epithelial cells. We show that uvomorulin is synthesized as a precursor polypeptide (Mr 135,000) that is core glycosylated in the endoplasmic reticulum. The precursor is processed to the mature polypeptide (Mr 120,000) shortly after addition of complex carbohydrate groups in the late Golgi complex, but prior to delivery of the polypeptide to the cell surface. However, glycosylation is not required for either efficient processing of the precursor or transport of uvomorulin to the cell surface. At the cell surface, uvomorulin is turned over rapidly (t1/2 approximately 5 h). Induction of Ca(2+)-dependent cell-cell contact results in rapid localization of cell surface uvomorulin to regions of contact and an increase in the proportion of uvomorulin that is insoluble in buffers containing Triton X-100. These results indicate several regulatory steps in the biosynthesis and cell surface expression of uvomorulin in epithelial cells.  相似文献   

14.
Z Xu  V Bruss    T S Yen 《Journal of virology》1997,71(7):5487-5494
Hepatitis B virus small surface protein is synthesized as a transmembrane protein of the rough endoplasmic reticulum (RER) and then buds into the lumen in the form of subviral particles that are secreted. The closely related large surface protein is also targeted to the RER but is retained in a pre-Golgi compartment and cannot be secreted. It has been assumed that the large surface protein remains as a transmembrane RER protein and hence cannot form particles, possibly because of binding to a host factor on the cytosolic face of the RER membranes. We have reexamined this question and found the following results. (i) The retained large surface protein is associated not with RER but, rather, with a more distal compartment. (ii) Electron microscopy reveals intravesicular 20-nm particles, similar to those formed by the small surface protein. (iii) The large surface protein colocalizes with and binds to calnexin, an ER chaperone protein. Therefore, our results indicate that the large surface protein is capable of budding and forming particles, and hence its intracellular retention cannot be attributed to a cytosolic factor. We interpret the data as evidence that the large surface protein is retained by virtue of interacting with calnexin, a component of what is considered the quality control mechanism of the ER.  相似文献   

15.
The development of a surface barrier discharge in air at atmospheric pressure under the action of a constant voltage of different polarity is simulated numerically. When the polarity of the high-voltage electrode is negative, the discharge develops as an ionization wave that moves along the dielectric surface. When the polarity is positive, the discharge develops as a streamer that first moves above the dielectric surface and then comes into contact with and continues to develop along it. In the case of a high-voltage electrode of positive polarity, the discharge zone above the dielectric surface is approximately five times thicker than that in the case of negative polarity. The characteristic aspects of numerical simulation of the streamer phase of a surface barrier discharge are discussed. The numerical results on the density of the charge stored at the dielectric surface and on the length of the discharge zone agree with the experimental data.  相似文献   

16.
17.
Zhang W  Liu G  Tang F  Shao J  Lu Y  Bao Y  Yao H  Lu C 《PloS one》2011,6(6):e21234
Streptococcus suis serotype 2 (SS2) is a zoonotic pathogen that can cause infections in pigs and humans. Bacterial surface proteins are often investigated as potential vaccine candidates and biomarkers of virulence. In this study, a novel method for identifying bacterial surface proteins is presented, which combines immunoproteomic and immunoserologic techniques. Critical to the success of this new method is an improved procedure for generating two-dimensional electrophoresis gel profiles of S. suis proteins. The S. suis surface proteins identified in this study include muramidase-released protein precursor (MRP) and an ABC transporter protein, while MRP is thought to be one of the main virulence factors in SS2 located on the bacterial surface. Herein, we demonstrate that the ABC transporter protein can bind to HEp-2 cells, which strongly suggests that this protein is located on the bacterial cell surface and may be involved in pathogenesis. An immunofluorescence assay confirmed that the ABC transporter is localized to the bacterial outer surface. This new method may prove to be a useful tool for identifying surface proteins, and aid in the development of new vaccine subunits and disease diagnostics.  相似文献   

18.
The covalent attachment of organic films and of biological molecules to fused silica and glass substrates is important for many applications. For applications such as biosensor development, it is desired that the immobilised molecules be assembled in a uniform layer on the surface so as to provide for reproducibility and speed of surface interactions. For optimal derivatisation the surface must be appropriately cleaned to remove contamination, to create surface attachment sites such as hydroxyl groups, and to control surface roughness. The irregularity of the surface can be significant in defining the integrity and density of immobilised films. Numerous cleaning methods exist for fused silica and glass substrates and these include gas plasmas, and combinations of acids, bases and organic solvents that are allowed to react at varying temperatures. For many years, we have used a well established method based on a combination of washing with basic peroxide followed by acidic peroxide to clean and hydroxylate the surface of fused silica and glass substrates before oligonucleotide immobilisation. Atomic force microscopy (AFM) has been used to evaluate the effect of cleaning on surface roughness for various fused silica and glass samples. The results indicate that surface roughness remains substantial after use of this common cleaning routine, and can provide a surface area that is more than 10% but less than 30% larger than anticipated from geometric considerations of a planar surface.  相似文献   

19.
Distribution and complementarity of hydropathy in multisubunit proteins   总被引:7,自引:0,他引:7  
A P Korn  R M Burnett 《Proteins》1991,9(1):37-55
A survey of 40 multisubunit proteins and 2 protein-protein complexes was performed to assay quantitatively the distribution of hydropathy among the exterior surface, interior, contact surface, and noncontact exterior surface of the isolated subunits. We suggest a useful way to present this distribution by using a "hydropathy level diagram." Additionally, we have devised a function called "hydropathy complementarity" to quantitate the degree to which interacting surfaces have matching hydropathy distributions. Our survey revealed the following patterns: (1) The difference in hydropathy between the interior and exterior of subunits is a fairly invariant quantity. (2) On average, the hydropathy of the contact surface is higher than that of the exterior surface, but is not greater than that of the protein as a whole. There was variation, however, among the proteins. In some instances, the contact surface was more hydrophilic than the noncontact exterior, and in a few cases the contact surface was as hydrophobic as the protein interior. (3) The average interface manifests significant hydropathy complementarity, signifying that proteins interact by placing hydrophobic centers of one surface against hydrophobic centers of the other surface, and by similarly matching hydrophilic centers. As a measure of recognition and specificity, hydropathy complementarity could be a useful tool for predicting correct docking of interacting proteins. We suggest that high hydropathy complementarity is associated with static inflexible interactions. (4) We have found that some subunits that bind predominantly through hydrophilic forces, such as hydrogen bonds, ionic pairs, and water and metal bridges, are involved in dynamic quaternary organization and allostery.  相似文献   

20.
Direct and indirect, in vivo and in vitro observations are in accord with the hypothesis that as a consequence of their deformation within capillaries, cancer cells undergo sphere-to-cylinder shape-transformations that create a demand for increased surface area. When this demand cannot be met by apparent increases in surface area accomplished by nonlethal, surface “unfolding,” the cell surface membrane is stretched; if expansion results in more than a 4% increase in true surface area, the membrane ruptures, resulting in cancer cell death. It is suggested that this deformation-driven process is an important factor in accounting for the rapid death of circulating cancer cells that have been trapped in the microvasculature. Therefore, this mechanism is thought to make a significant contribution to metastatic inefficiency by acting as a potent rate-regulator for hematogenous metastasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号