首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In yeast the Protein Kinase A (PKA) pathway can be activated by a variety of nutrients. Fermentable sugars, like glucose and sucrose, trigger a spike in the cAMP level, followed by activation of PKA and phosphorylation of target proteins causing a.o. mobilization of reserve carbohydrates, repression of stress-related genes and induction of growth-related genes. Glucose and sucrose are sensed by a G-protein coupled receptor system that activates adenylate cyclase and also activates a bypass pathway causing direct activation of PKA. Addition of other essential nutrients, like nitrogen sources or phosphate, to glucose-repressed nitrogen- or phosphate-starved cells, also triggers rapid activation of the PKA pathway. In these cases cAMP is not involved as a second messenger. Amino acids are sensed by the Gap1 transceptor, previously considered only as an amino acid transporter. Recent results indicate that the amino acid ligand has to induce a specific conformational change for signaling. The same amino acid binding site is involved in transport and signaling. Similar results have been obtained for Pho84 which acts as a transceptor for phosphate activation of the PKA pathway. Ammonium activation of the PKA pathway in nitrogen-starved cells is mediated mainly by the Mep2 transceptor, which belongs to a different class of transporter proteins. Hence, different types of sensing systems are involved in control of the yeast PKA pathway by nutrients.  相似文献   

2.
Extracellular signals regulate trafficking events to reorganize proteins at the plasma membrane (PM); however, few effectors of this regulation have been identified. β-Arrestins relay signaling cues to the trafficking machinery by controlling agonist-stimulated endocytosis of G-protein–coupled receptors. In contrast, we show that yeast α-arrestins, Aly1 and Aly2, control intracellular sorting of Gap1, the general amino acid permease, in response to nutrients. These studies are the first to demonstrate association of α-arrestins with clathrin and clathrin adaptor proteins (AP) and show that Aly1 and Aly2 interact directly with the γ-subunit of AP-1, Apl4. Aly2-dependent trafficking of Gap1 requires AP-1, which mediates endosome-to-Golgi transport, and the nutrient-regulated kinase, Npr1, which phosphorylates Aly2. During nitrogen starvation, Npr1 phosphorylation of Aly2 may stimulate Gap1 incorporation into AP-1/clathrin-coated vesicles to promote Gap1 trafficking from endosomes to the trans-Golgi network. Ultimately, increased Aly1-/Aly2-mediated recycling of Gap1 from endosomes results in higher Gap1 levels within cells and at the PM by diverting Gap away from trafficking pathways that lead to vacuolar degradation. This work defines a new role for arrestins in membrane trafficking and offers insight into how α-arrestins coordinate signaling events with protein trafficking.  相似文献   

3.
Several nutrient permeases have been identified in yeast, which combine a transport and receptor function, and are called transceptors. The Gap1 general amino acid permease and the Mep2 ammonium permease mediate rapid activation by amino acids and by ammonium, respectively, of the protein kinase A (PKA) pathway in nitrogen-starved cells. Their mode of action is not well understood. Both proteins are subject to complex controls governing their intracellular trafficking. Using a split-ubiquitin yeast two-hybrid screen with Gap1 or Mep2 as bait, we identified proteins putatively interacting with Gap1 and/or Mep2. They are involved in glycosylation, the secretory pathway, sphingolipid biosynthesis, cell wall biosynthesis and other processes. For several candidate interactors, determination of transport and signaling capacity, as well as localization of Gap1 or Mep2 in the corresponding deletion strains, confirmed a functional interaction with Gap1 and/or Mep2. Also common interacting proteins were identified. Transport and signaling were differentially affected in specific deletion strains, clearly separating the two functions of the transceptors and confirming that signaling does not require transport. We identified two new proteins, Bsc6 and Yir014w, that affect trafficking or downregulation of Gap1. Deletion of EGD2, YNL024c or SPC2 inactivates Gap1 transport and signaling, while its plasma membrane level appears normal.. Vma4 is required for Mep2 expression, while Gup1 appears to be required for proper distribution of Mep2 over the plasma membrane. Some of the interactions were confirmed by GST pull-down assay, using the C-terminal tail of Gap1 or Mep2 expressed in E.coli. Our results reveal the effectiveness of split-ubiquitin two-hybrid screening for identification of proteins functionally interacting with membrane proteins. They provide several candidate proteins involved in the transport and signaling function or in the complex trafficking control of the Gap1 and Mep2 transceptors.  相似文献   

4.
Intracellular sorting of the general amino acid permease (Gap1p) in Saccharomyces cerevisiae depends on availability of amino acids such that at low amino acid concentrations Gap1p is sorted to the plasma membrane, whereas at high concentrations Gap1p is sorted to the vacuole. In a genome-wide screen for mutations that affect Gap1p sorting we identified deletions in a subset of components of the ESCRT (endosomal sorting complex required for transport) complex, which is required for formation of the multivesicular endosome (MVE). Gap1p-GFP is delivered to the vacuolar interior by the MVE pathway in wild-type cells, but when formation of the MVE is blocked by mutation, Gap1p-GFP efficiently cycles from this compartment to the plasma membrane, resulting in unusually high permease activity at the cell surface. Importantly, cycling of Gap1p-GFP to the plasma membrane is blocked by high amino acid concentrations, defining recycling from the endosome as a major step in Gap1p trafficking under physiological control. Mutations in LST4 and LST7 genes, previously identified for their role in Gap1p sorting, similarly block MVE to plasma membrane trafficking of Gap1p. However, mutations in other recycling complexes such as the retromer had no significant effect on the intracellular sorting of Gap1p, suggesting that Gap1p follows a genetically distinct pathway for recycling. We previously found that Gap1p sorting from the Golgi to the endosome requires ubiquitination of Gap1p by an Rsp5p ubiquitin ligase complex, but amino acid abundance does not appear to significantly alter the accumulation of polyubiquitinated Gap1p. Thus the role of ubiquitination appears to be a signal for delivery of Gap1p to the MVE, whereas amino acid abundance appears to control the cycling of Gap1p from the MVE to the plasma membrane.  相似文献   

5.
Addition of a nitrogen source to yeast (Saccharomyces cerevisiae) cells starved for nitrogen on a glucose-containing medium triggers activation of protein kinase A (PKA) targets through a pathway that requires for sustained activation both a fermentable carbon source and a complete growth medium (fermentable growth medium induced or FGM pathway). Trehalase is activated, trehalose and glycogen content as well as heat resistance drop rapidly, STRE-controlled genes are repressed, and ribosomal protein genes are induced. We show that the rapid effect of amino acids on these targets specifically requires the general amino acid permease Gap1. In the gap1Delta strain, transport of high concentrations of l-citrulline occurs at a high rate but without activation of trehalase. Metabolism of the amino acids is not required. Point mutants in Gap1 with reduced or deficient transport also showed reduced or deficient signalling. However, two mutations, S391A and S397A, were identified with a differential effect on transport and signalling for l-glutamate and l-citrulline. Specific truncations of the C-terminus of Gap1 (e.g. last 14 or 26 amino acids) did not reduce transport activity but caused the same phenotype as in strains with constitutively high PKA activity also during growth with ammonium as sole nitrogen source. The overactive PKA phenotype was abolished by mutations in the Tpk1 or Tpk2 catalytic subunits. We conclude that Gap1 acts as an amino acid sensor for rapid activation of the FGM signalling pathway which controls the PKA targets, that transport through Gap1 is connected to signalling and that specific truncations of the C-terminus result in permanently activating Gap1 alleles.  相似文献   

6.
Duan  Yehui  Li  Fengna  Tan  Kunrong  Liu  Hongnan  Li  Yinghui  Liu  Yingying  Kong  Xiangfeng  Tang  Yulong  Wu  Guoyao  Yin  Yulong 《Amino acids》2015,47(5):857-867

Mammalian target of rapamycin complex 1 (mTORC1) is activated by amino acids to promote cell growth via protein synthesis. Specifically, Ras-related guanosine triphosphatases (Rag GTPases) are activated by amino acids, and then translocate mTORC1 to the surface of late endosomes and lysosomes. Ras homolog enriched in brain (Rheb) resides on this surface and directly activates mTORC1. Apart from the presence of intracellular amino acids, Rag GTPases and Rheb, other mediators involved in intracellular amino acid signaling to mTORC1 activation include human vacuolar sorting protein-34 (hVps34) and mitogen-activating protein kinase kinase kinase kinase-3 (MAP4K3). Those molecular links between mTORC1 and its mediators form a complicate signaling network that controls cellular growth, proliferation, and metabolism. Moreover, it is speculated that amino acid signaling to mTORC1 may start from the lysosomal lumen. In this review, we discussed the function of these mediators in mTORC1 pathway and how these mediators are regulated by amino acids in details.

  相似文献   

7.
Ubiquitination of the yeast Gap1 permease at the plasma membrane triggers its endocytosis followed by targeting to the vacuolar lumen for degradation. We previously identified Bro1 as a protein essential to this down-regulation. In this study, we show that Bro1 is essential neither to ubiquitination nor to the early steps of Gap1 endocytosis. Bro1 rather intervenes at a late step of the multivesicular body (MVB) pathway, after the core components of the endosome-associated ESCRT-III protein complex and before or in conjunction with Doa4, the ubiquitin hydrolase mediating protein deubiquitination prior to their incorporation into MVB vesicles. Bro1 markedly differs from other class E vacuolar protein sorting factors involved in MVB sorting as lack of Bro1 leads to recycling of the internalized permease back to the plasma membrane by passing through the Golgi. This recycling seems to be accompanied by deubiquitination of the permease and unexpectedly requires a normal endosome-to-vacuole transport function.  相似文献   

8.
9.
P K Herman  J H Stack  J A DeModena  S D Emr 《Cell》1991,64(2):425-437
The VPS15 gene encodes a novel protein kinase homolog that is essential for the efficient delivery of soluble hydrolases to the yeast vacuole. Point mutations altering highly conserved residues within the Vps15p kinase domain result in the secretion of multiple vacuolar proteases. In addition, the in vivo phosphorylation of Vps15p is defective in these kinase domain mutants, suggesting that Vps15p may regulate specific protein phosphorylation reactions required for protein sorting to the yeast vacuole. Subcellular fractionation studies further demonstrate that the 1455 amino acid Vps15p is peripherally associated with the cytoplasmic face of a late Golgi or vesicle compartment. This association may be mediated by myristate as Vps15p contains a consensus signal for N-terminal myristoylation. We propose that protein phosphorylation may act as a molecular "switch" within intracellular protein sorting pathways by actively diverting proteins from a default transit pathway (e.g., secretion) to an alternative pathway (e.g., to the vacuole).  相似文献   

10.
Using proteomics and immunofluorescence, we demonstrated epidermal growth factor (EGF) induced recruitment of extrinsic V(1) subunits of the vacuolar (H(+))-ATPase (V-ATPase) to rat liver endosomes. This was accompanied by reduced vacuolar pH. Bafilomycin, an inhibitor of V-ATPase, inhibited EGF-stimulated DNA synthesis and mammalian target of rapamycin complex 1 (mTORC1) activation as indicated by a decrease in eukaryotic initiation factor 4E-binding 1 (4E-BP1) phosphorylation and p70 ribosomal S6 protein kinase (p70S6K) phosphorylation and kinase activity. There was no corresponding inhibition of EGF-induced Akt and extracellular signal-regulated kinase (Erk) activation. Chloroquine, a neutralizer of vacuolar pH, mimicked bafilomycin effects. Bafilomycin did not inhibit the association of mTORC1 with Raptor nor did it affect AMP-activated protein kinase activity. Rather, the intracellular concentrations of essential but not non-essential amino acids were decreased by bafilomycin in EGF-treated primary rat hepatocytes. Cycloheximide, a translation elongation inhibitor known to augment intracellular amino acid levels, prevented the effect of bafilomycin on amino acids levels and completely reversed its inhibition of EGF-induced mTORC1 activation. In vivo administration of EGF stimulated the recruitment of Ras homologue enriched in brain (Rheb) but not mammalian target of rapamycin (mTOR) to endosomes and lysosomes. This was inhibited by chloroquine treatment. Our results suggest a role for vacuolar acidification in EGF signaling to mTORC1.  相似文献   

11.
In yeast, ubiquitin plays a central role in proteolysis of a multitude of proteins and serves also as a signal for endocytosis of many plasma membrane proteins. We showed previously that ubiquitination of the general amino acid permease (Gap1) is essential to its endocytosis followed by vacuolar degradation. These processes occur when NH(4)(+), a preferential source of nitrogen, is added to cells growing on proline or urea, i.e. less favored nitrogen sources. In this study, we show that Gap1 is ubiquitinated on two lysine residues in the cytosolic N terminus (positions 9 and 16). A mutant Gap1 in which both lysines are mutated (Gap1(K9K16)) remains fully stable at the plasma membrane after NH(4)(+) addition. Furthermore, each of the two lysines harbors a poly-ubiquitin chain in which ubiquitin is linked to the lysine 63 of the preceding ubiquitin. The Gap1(K9) and Gap1(K16) mutants, in which a single lysine is mutated, are down-regulated in response to NH(4)(+) although more slowly. In proline-grown cells lacking Npr1, a protein kinase involved in the control of Gap1 trafficking, newly synthesized Gap1 is sorted from the Golgi to the vacuole without passing through the plasma membrane (accompanying article, De Craene, J.-O., Soetens, O., and André, B. (2001) J. Biol. Chem. 276, 43939-43948). We show here that ubiquitination of Gap1 is also required for this direct sorting to the vacuole. In an npr1Delta mutant, neosynthesized Gap1(K9K16) is rerouted to and accumulates at the plasma membrane. Finally, Bul1 and Bul2, two proteins interacting with Npi1/Rsp5, are essential to ubiquitination and down-regulation of cell-surface Gap1, as well as to sorting of neosynthesized Gap1 to the vacuole, as occurs in an npr1Delta mutant. Our results reveal a novel role of ubiquitin in the control of Gap1 trafficking, i.e. direct sorting from the late secretory pathway to the vacuole. This result reinforces the growing evidence that ubiquitin plays an important role not only in internalization of plasma membrane proteins but also in their sorting in the endosomes and/or trans-Golgi.  相似文献   

12.
The high capacity general amino acid permease, Gap1p, in Saccharomyces cerevisiae is distributed between the plasma membrane and internal compartments according to availability of amino acids. When internal amino acid levels are low, Gap1p is localized to the plasma membrane where it imports available amino acids from the medium. When sufficient amino acids are imported, Gap1p at the plasma membrane is endocytosed and newly synthesized Gap1p is delivered to the vacuole; both sorting steps require Gap1p ubiquitination. Although it has been suggested that identical trans-acting factors and Gap1p ubiquitin acceptor sites are involved in both processes, we define unique requirements for each of the ubiquitin-mediated sorting steps involved in delivery of Gap1p to the vacuole upon amino acid addition. Our finding that distinct ubiquitin-mediated sorting steps employ unique trans-acting factors, ubiquitination sites on Gap1p, and types of ubiquitination demonstrates a previously unrecognized level of specificity in ubiquitin-mediated protein sorting.  相似文献   

13.
Vacuolar acidification has been proposed to play a key role in a number of cellular processes, including protein sorting, zymogen activation, and maintenance of intracellular pH. We investigated the significance of vacuolar acidification by cloning and mutagenizing the gene for the yeast vacuolar proton-translocating ATPase 60-kilodalton subunit (VAT2). Cells carrying a vat2 null allele were viable; however, these cells were severely defective for growth in medium buffered at neutral pH. Vacuoles isolated from cells bearing the vat2 null allele were completely devoid of vacuolar ATPase activity. The pH of the vacuolar lumen of cells bearing the vat2 mutation was 7.1, compared with the wild-type pH of 6.1, as determined by a flow cytometric pH assay. These results indicate that the vacuolar proton-translocating ATPase complex is essential for vacuolar acidification and that the low-pH state of the vacuole is crucial for normal growth. The vacuolar acidification-defective vat2 mutant exhibited normal zymogen activation but displayed a minor defect in vacuolar protein sorting.  相似文献   

14.
P K Herman  J H Stack    S D Emr 《The EMBO journal》1991,10(13):4049-4060
The yeast VPS15 gene encodes a novel protein kinase homolog that is required for the sorting of soluble hydrolases to the yeast vacuole. In this study, we extend our previous mutational analysis of the VPS15 gene and show that alterations of specific Gps15p residues, that are highly conserved among all protein kinase molecules, result in the biological inactivation of Vps15p. Furthermore, we demonstrate here that short C-terminal deletions of Vps15p result in a temperature-conditional defect in vacuolar protein sorting. Immediately following the temperature shift, soluble vacuolar hydrolases, such as carboxypeptidase Y and proteinase A, accumulate as Golgi-modified precursors within a saturable intracellular compartment distinct from the vacuole. This vacuolar protein sorting block is efficiently reversed when mutant cells are shifted back to the permissive temperature; the accumulated precursors are rapidly processed to their mature forms indicating that they have been delivered to the vacuole. This rapid and efficient reversal suggests that the accumulated vacuolar protein precursors were present within a normal transport intermediate in the vacuolar protein sorting pathway. In addition, this protein delivery block shows specificity for soluble vacuolar enzymes as the membrane protein, alkaline phosphatase, is efficiently delivered to the vacuole at the non-permissive temperature. Interestingly, the C-terminal Vps15p truncations are not phosphorylated in vivo suggesting that the phosphorylation of Vps15p may be critical for its biological activity at elevated temperatures. The rapid onset and high degree of specificity of the vacuolar protein delivery block in these mutants suggests that the primary role of Vps15p is to regulate the sorting of soluble hydrolases to the yeast vacuolar compartment.  相似文献   

15.
Ubiquitin (Ub) attachment to membrane proteins can serve as a sorting signal for lysosomal delivery. Recognition of Ub as a sorting signal can occur at the trans-Golgi network and is mediated in part by the clathrin-associated Golgi-localizing, gamma-adaptin ear domain homology, ARF-binding proteins (GGA). GGA proteins bind Ub via a three-helix bundle subdomain in their GAT (GGA and target of Myb1 protein) domain, which is also present in the Ub binding domain of target of Myb1 protein. Ubiquitin binding by yeast Ggas is required to direct sorting of ubiquitinated proteins such as general amino acid permease (Gap1) from the trans-Golgi network to endosomes. Using affinity chromatography and nuclear magnetic resonance spectroscopy, we have found that the human GGA3 GAT domain contains two Ub binding motifs that bind to the same surface of ubiquitin. These motifs are found within different helices within the three-helix GAT subdomain. When functionally analyzed in yeast, each motif was sufficient to mediate trans-Golgi network to endosomal sorting of Gap1, and mutation of both motifs resulted in defective Gap1 sorting without defects in other GGA-dependent processes.  相似文献   

16.
17.
Whyte JR  Munro S 《Current biology : CB》2001,11(13):1074-1078
The soluble hydrolases of the mammalian lysosome are marked for delivery to this organelle by the addition of mannose 6-phosphate to their N-glycans. Two related mannose 6-phosphate receptors (MPRs) recognize this feature in the trans Golgi network (TGN) and deliver the hydrolases to the late endosome. In contrast, the vacuolar hydrolases of the yeast Saccharomyces cerevisiae do not contain 6-phosphate monoesters on their N-glycans, and the only sorting receptor so far identified in this organism is the product of the VPS10 gene. This protein also cycles between the Golgi and the late endosome, but is unrelated to the vertebrate MPRs, and recognizes a specific amino acid sequence of carboxypeptidase Y (CPY). This has led to the notion that although yeast and mammals share many components in Golgi to endosome traffic, they use unrelated receptor systems to sort their abundant soluble hydrolases. In this paper, we report that the yeast genome does in fact contain an uncharacterized ORF (YPR079w) that encodes a membrane protein that is distantly related to mammalian MPRs. The protein encoded by this gene (which we term MRL1) cycles through the late endosome. Moreover, there is a strong synergistic effect on the maturation of proteinases A and B when both MRL1 and VPS10 are deleted, which suggests that Mrl1p may serve as a sorting receptor in the delivery of vacuolar hydrolases.  相似文献   

18.
Plants take up and translocate nutrients through transporters. In Arabidopsis thaliana, the borate exporter BOR1 acts as a key transporter under boron (B) limitation in the soil. Upon sufficient-B supply, BOR1 undergoes ubiquitination and is transported to the vacuole for degradation, to avoid overaccumulation of B. However, the mechanisms underlying B-sensing and ubiquitination of BOR1 are unknown. In this study, we confirmed the lysine-590 residue in the C-terminal cytosolic region of BOR1 as the direct ubiquitination site and showed that BOR1 undergoes K63-linked polyubiquitination. A forward genetic screen identified that amino acid residues located in vicinity of the substrate-binding pocket of BOR1 are essential for the vacuolar sorting. BOR1 variants that lack B-transport activity showed a significant reduction of polyubiquitination and subsequent vacuolar sorting. Coexpression of wild-type (WT) and a transport-defective variant of BOR1 in the same cells showed degradation of the WT but not the variant upon sufficient-B supply. These findings suggest that polyubiquitination of BOR1 relies on its conformational transition during the transport cycle. We propose a model in which BOR1, as a B transceptor, directly senses the B concentration and promotes its own polyubiquitination and vacuolar sorting for quick and precise maintenance of B homeostasis.

The borate transporter BOR1 senses the boron concentration through its borate transport activity for K63-linked polyubiquitination and subsequent degradation.  相似文献   

19.
Organelle acidification plays a demonstrable role in intracellular protein processing, transport, and sorting in animal cells. We investigated the relationship between acidification and protein sorting in yeast by treating yeast cells with ammonium chloride and found that this lysosomotropic agent caused the mislocalization of a substantial fraction of the newly synthesized vacuolar (lysosomal) enzyme proteinase A (PrA) to the cell surface. We have also determined that a subset of the vpl mutants, which are deficient in sorting of vacuolar proteins (Rothman, J. H., and T. H. Stevens. 1986. Cell. 47:1041-1051; Rothman, J. H., I. Howald, and T. H. Stevens. EMBO [Eur. Mol. Biol. Organ.] J. In press), failed to accumulate the lysosomotropic fluorescent dye quinacrine within their vacuoles, mimicking the phenotype of wild-type cells treated with ammonium. The acidification defect of vpl3 and vpl6 mutants correlated with a marked deficiency in vacuolar ATPase activity, diminished levels of two immunoreactive subunits of the protontranslocating ATPase (H+-ATPase) in purified vacuolar membranes, and accumulation of the intracellular portion of PrA as the precursor species. Therefore, some of the VPL genes are required for the normal function of the yeast vacuolar H+-ATPase complex and may encode either subunits of the enzyme or components required for its assembly and targeting. Collectively, these findings implicate a critical role for acidification in vacuolar protein sorting and zymogen activation in yeast, and suggest that components of the yeast vacuolar acidification system may be identified by examining mutants defective in sorting of vacuolar proteins.  相似文献   

20.
To further our studies of protein sorting and biogenesis of the lysosome-like vacuole in yeast, we have isolated spontaneous mutations in 11 new VPL complementation groups, as well as additional alleles of the eight previously described VPL genes. These mutants were identified by selecting for cells that mislocalize vacuolar proteins to the cell surface. Morphological examination of the vpl mutants indicated that most contain vacuoles of normal appearance; however, some of the mutants generally lack a large vacuole, and instead accumulate smaller organelles. Of the 19 VPL complementation groups, 12 were found to be identical to 12 of 33 VPT complementation groups identified in a separate study. Moreover, the end1 mutant and all of the previously reported pep mutants, with the exception of pep4, were found to exhibit a profound vacuolar protein sorting defect, and complementation tests between the PEP, VPL VPT and END1 groups demonstrated that there are extensive overlaps between these groups. Collectively, mutants in these four collections define 49 complementation groups required to deliver or retain soluble vacuolar enzymes, including carboxypeptidase Y (CPY) and proteinase A. We have also isolated 462 new mutants that lack normal levels of vacuolar CPY activity. Among these latter mutants, only pep4 mutants were found to be specifically defective in vacuolar zymogen activation. We conclude that there is a large number of gene products required for sorting or retention of vacuolar proteins in yeast, and only a single gene, PEP4, that is essential for activation of CPY and other vacuolar zymogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号