首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
European and North American strains of the parasite Toxoplasma gondii belong to three distinct clonal lineages, type I, type II, and type III, which differ in virulence. Understanding the basis of Toxoplasma strain differences and how secreted effectors work to achieve chronic infection is a major goal of current research. Here we show that type I and III infected macrophages, a cell type required for host immunity to Toxoplasma, are alternatively activated, while type II infected macrophages are classically activated. The Toxoplasma rhoptry kinase ROP16, which activates STAT6, is responsible for alternative activation. The Toxoplasma dense granule protein GRA15, which activates NF-κB, promotes classical activation by type II parasites. These effectors antagonistically regulate many of the same genes, and mice infected with type II parasites expressing type I ROP16 are?protected against Toxoplasma-induced ileitis. Thus, polymorphisms in determinants that modulate?macrophage activation influence the ability of Toxoplasma to establish a chronic infection.  相似文献   

2.
3.
Protection against certain intracellular pathogens can take place in the absence of IFN-gamma through mechanisms dependent on TNF-alpha. In this regard, patients with partial defect in IFN-gamma receptor 1 are not susceptible to toxoplasmosis. Thus, we used a model of Toxoplasma gondii infection to investigate whether CD154 modulates IFN-gamma-independent mechanisms of host protection. Human monocyte-derived macrophages treated with recombinant CD154 exhibited increased anti-T. gondii activity. The number of tachyzoites per 100 macrophages at 20 h postinfection was lower in CD154-treated macrophages compared with controls. This was accompanied by a decrease in the percentage of infected cells in CD154-treated macrophages at 20 h compared with 1 h postinfection. CD154-bearing cells also induced antimicrobial activity in T. gondii-infected macrophages. CD154 enhanced macrophage anti-T. gondii activity independently of IFN-gamma. TNF-alpha mediated the effects of CD154 on macrophage anti-T. gondii activity. CD154 increased TNF-alpha production by T. gondii-infected macrophages, and neutralization of TNF-alpha inhibited the effect of CD154 on macrophage anti-T. gondii activity. These results demonstrate that CD154 triggers TNF-alpha-dependent antimicrobial activity in macrophages and suggest that CD154 regulates the mechanisms of host protection that take place when IFN-gamma signaling is deficient.  相似文献   

4.
The intracellular opportunistic protozoan Toxoplasma gondii is a potent stimulus for cell-mediated immunity, and IL-12-dependent IFN-gamma induction is vital in resistance to the parasite. Dendritic cells, neutrophils and macrophages are important sources of IL-12 during infection. T. gondii possesses two mechanisms for triggering IL-12. One is dependent upon the common adaptor protein MyD88, and is likely to involve Toll-like receptors. The other is a more unusual pathway that involves triggering through CCR5 by a parasite cyclophilin molecule. Countering these potent pro-inflammatory activities, T. gondii has several mechanisms to down-regulate immunity. Intracellular infection causes a blockade in the NFkappaB macrophage signaling pathway, correlating with reduced capacity for IL-12 and TNF-alpha production. The parasite also prevents STAT1 activity, resulting in decreased levels of IFN-gamma-stimulated MHC surface antigen expression. Furthermore, infection also induces resistance to apoptosis through inhibition of caspase activity. Extracellular pathways of suppression involve soluble mediators such as IL-10 and lipoxins that have potent IL-12 down-regulatory effects. The balance of pro-inflammatory and anti-inflammatory signaling which T. gondii engages is likely dictated by requirements for a stable host-parasite interaction. First, there is a need for Toxoplasma to induce an immune response robust enough to allow host survival and establish long-term chronic infection. Second, the parasite must avoid immune-elimination and induction of pro-inflammatory pathology that can cause lethality if unchecked. The widespread distribution of T. gondii and the normally innocuous nature of infection indicate the skill with which the parasite achieves the two seemingly contrary goals.  相似文献   

5.
6.
Peritoneal macrophages from Wistar rats, inoculated and non-inoculated with 10(6) T. lewisi trypomastigotes, were cultured and infected with 10(6) T. gondii tachyzoites. Multiplication rates of this parasite were studied after 1, 24 and 48 h of infection but there were not significant differences between the number of parasites found inside of macrophages coming, either from T. lewisi infected or non infected rats. On the other hand, in vivo studies of Toxoplasma multiplication inside peritoneal macrophages, showed that there is an increase of parasite number in cells from T. lewisi infected rats, as compared with those macrophages from non infected rats. This effect was statistically significant and was more evident after four days of infection. Therefore, it has been demonstrated that in vivo, but not in vitro T. lewisi infections, causes an important decrease of the natural resistance to T. gondii of the white rats, which is manifested by the major invasion and multiplication of the parasite inside of peritoneal macrophages.  相似文献   

7.
Human infection with Toxoplasma gondii is generally asymptomatic in immunocompetent adults while it causes significant morbidity in congenitally infected children. Cell mediated immunity plays the main role in host resistance to T. gondii infection and a Th1 cytokine profile is necessary for protection and control of infection. The present work focused on comparing the helper T cell response to the GRA1 antigen of the parasite between children with congenital toxoplasmosis and healthy adults with acquired infection. We demonstrated that in young children with congenital infection the specific T cell response to parasite antigens is impaired and that such hypo-responsiveness is restored during childhood. Also, we provided clear evidence that in individuals with congenital toxoplasmosis the acquisition of functional helper T cell responses is disease-unrelated and indistinguishable in terms of strength, epitope specificity, and cytokine profile from the corresponding responses in immunocompetent adults with asymptomatic acquired T. gondii infection.  相似文献   

8.
9.
Infection with Toxoplasma gondii in the acute phase results in nonspecific suppression of immunologic function in mice and humans. The present study examined the effects of a physical stressor, i.e., cold stress (CS), on macrophage function (nitrite production, parasite survival) and splenic blastogenesis in the acute phase of murine T. gondii infection. In our stress paradigm, female BALB/c mice were placed in cold water (1 +/- 0.5 C), 5 min each day for 8 days. Nitrite production and parasite survival were measured in cultured peritoneal macrophages obtained from mice subjected to CS after in vivo activation with interferon-gamma/lipopolysaccharide (CS + ACT), and in vitro infection with T. gondii tachyzoites. Peritoneal macrophages from CS + ACT mice showed decreased nitrite production compared to control but activated cells (ACT). Spleen cell proliferation to in vitro stimulation with the mitogens concanavalin A (Con A) and anti-CD3, and Toxoplasma lysate antigen (TLA) was measured in splenocytes obtained from BALB/c mice during the acute phase of infection with T. gondii. Mice subjected to CS and infection (CS + INF) had maximum splenocyte proliferation on days 8 and 15 followed by a subsequent decline on day 28 postinoculation (PI). In contrast, infected mice not subjected to stress (INF) showed decreased splenocyte proliferation on days 8 and 15 followed by an increase on day 28 PI. The rate of mortality was decreased in the CS + INF compared to the INF group during acute infection. These results suggest that CS may alter the pathogenesis of T. gondii infection by modulating acute-phase responses, provoking a state of transient disequilibrium between the host and parasite.  相似文献   

10.
Long-term resistance to Toxoplasma gondii is dependent on the development of parasite-specific T cells that produce IFN-gamma. CD28 is a costimulatory molecule important for optimal activation of T cells, but CD28(-/-) mice are resistant to T. gondii, demonstrating that CD28-independent mechanisms regulate T cell responses during toxoplasmosis. The identification of the B7-related protein 1/inducible costimulator protein (ICOS) pathway and its ability to regulate the production of IFN-gamma suggested that this pathway may be involved in the CD28-independent activation of T cells required for resistance to T. gondii. In support of this hypothesis, infection of wild-type or CD28(-/-) mice with T. gondii resulted in the increased expression of ICOS by activated CD4(+) and CD8(+) T cells. In addition, both costimulatory pathways contributed to the in vitro production of IFN-gamma by parasite-specific T cells and when both pathways were blocked, there was an additive effect that resulted in almost complete inhibition of IFN-gamma production. Although in vivo blockade of the ICOS costimulatory pathway did not result in the early mortality of wild-type mice infected with T. gondii, it did lead to increased susceptibility of CD28(-/-) mice to T. gondi associated with reduced serum levels of IFN-gamma, increased parasite burden, and increased mortality compared with the control group. Together, these results identify a critical role for ICOS in the protective Th1-type response required for resistance to T. gondii and suggest that ICOS and CD28 are parallel costimulatory pathways, either of which is sufficient to mediate resistance to this intracellular pathogen.  相似文献   

11.
12.
Toxoplasma gondii pathogenesis includes the invasion of host cells by extracellular parasites, replication of intracellular tachyzoites, and differentiation to a latent bradyzoite stage. We present the analysis of seven novel T. gondii insertional mutants that do not undergo normal differentiation to bradyzoites. Microarray quantification of the variation in genome-wide RNA levels for each parasite line and times after induction allowed us to describe states in the normal differentiation process, to analyze mutant lines in the context of these states, and to identify genes that may have roles in initiating the transition from tachyzoite to bradyzoite. Gene expression patterns in wild-type parasites undergoing differentiation suggest a novel extracellular state within the tachyzoite stage. All mutant lines exhibit aberrant regulation of bradyzoite gene expression and notably some of the mutant lines appear to exhibit high proportions of the intracellular tachyzoite state regardless of whether they are intracellular or extracellular. In addition to the genes identified by the insertional mutagenesis screen, mixture model analysis allowed us to identify a small number of genes, in mutants, for which expression patterns could not be accounted for using the three parasite states--genes that may play a mechanistic role in switching from the tachyzoite to bradyzoite stage.  相似文献   

13.
Purine transport into the protozoan parasite Toxoplasma gondii plays an indispensable nutritional function for this pathogen. To facilitate genetic and biochemical characterization of the adenosine transporter of the parasite, T. gondii tachyzoites were transfected with an insertional mutagenesis vector, and clonal mutants were selected for resistance to the cytotoxic adenosine analog adenine arabinoside (Ara-A). Whereas some Ara-A-resistant clones exhibited disruption of the adenosine kinase (AK) locus, others displayed normal AK activity, suggesting that a second locus had been tagged by the insertional mutagenesis plasmid. These Ara-A(r) AK+ mutants displayed reduced adenosine uptake capability, implying a defect in adenosine transport. Sequences flanking the transgene integration point in one mutant were rescued from a genomic library of Ara-A(r) AK+ DNA, and Southern blot analysis revealed that all Ara-A(r) AK+ mutants were disrupted at the same locus. Probes derived from this locus, designated TgAT, were employed to isolate genomic and cDNA clones from wild-type libraries. Conceptual translation of the TgAT cDNA open reading frame predicts a 462 amino acid protein containing 11 transmembrane domains, a primary structure and membrane topology similar to members of the mammalian equilibrative nucleoside transporter family. Expression of TgAT cRNA in Xenopus laevis oocytes increased adenosine uptake capacity in a saturable manner, with an apparent K(m) value of 114 microM. Uptake was inhibited by various nucleosides, nucleoside analogs, hypoxanthine, guanine, and dipyridamole. The combination of genetic and biochemical studies demonstrates that TgAT is the sole functional adenosine transporter in T. gondii and a rational target for therapeutic intervention.  相似文献   

14.
Toxoplasma gondii is an obligate intracellular parasite, able to disseminate into deep tissues and cross biological barriers, reaching immunoprivileged sites such as the brain and retina. In order to investigate whether the parasite uses leukocyte trafficking to disseminate throughout the host, the adhesive potential to extracellular matrix components, the expression of adhesion molecules and the in vivo migration of murine macrophages infected with RH strain of T. gondii were investigated. Cellular adhesion to fibronectin, laminin and collagen IV decreased after 24 h of T. gondii infection. However, the decrease in adhesion of infected macrophages observed at early infection was reversed after 48 h. Moreover, decreased adhesion was dependent on active penetration, since heat-killed parasites were unable to reproduce it. Expression of integrins alphaL, alpha4 and alpha5 chains was downmodulated early postinfection, but a progressive regain of expression was observed after 12 h of infection. Expression of beta2, alphav and alpha4 integrins by peritoneal macrophages at late infection was also gradually reestablished. The assessment of in vivo migration of infected macrophages labeled with the fluorescent dye 5-chloromethylfluorescein diacetate showed a 48-h delay in migration to cervical lymph nodes when compared to LPS pre-stimulated macrophages. Furthermore, cells that migrate to distal lymph nodes were loaded with live parasites. Taken together, these results provide insights about T. gondii escape from the host immune response, placing the macrophage as a "Trojan horse", contributing to parasite dissemination and access to immunoprivileged sites.  相似文献   

15.
16.
The host response to intracellular pathogens requires the coordinated action of both the innate and acquired immune systems. Chemokines play a critical role in the trafficking of immune cells and transitioning an innate immune response into an acquired response. We analyzed the host response of mice deficient in the chemokine receptor CCR5 following infection with the intracellular protozoan parasite Toxoplasma gondii. We found that CCR5 controls recruitment of natural killer (NK) cells into infected tissues. Without this influx of NK cells, tissues from CCR5-deficient (CCR5-/-) mice were less able to generate an inflammatory response, had decreased chemokine and interferon gamma production, and had higher parasite burden. As a result, CCR5-/- mice were more susceptible to infection with T. gondii but were less susceptible to the immune-mediated tissue injury seen in certain inbred strains. Adoptive transfer of CCR5+/+ NK cells into CCR5-/- mice restored their ability to survive lethal T. gondii infection and demonstrated that CCR5 is required for NK cell homing into infected liver and spleen. This study establishes CCR5 as a critical receptor guiding NK cell trafficking in host defense.  相似文献   

17.
18.
Activation of cells from the innate immune system has an important role in host resistance to early infection with the intracellular protozoan parasite, Trypanosoma cruzi. Here we review the studies that have identified and structurally characterized the glycosylphosphatidylinositol (GPI) anchors, as parasite molecules responsible for the activation of cells from the macrophage lineage. We also cover the studies that have identified the receptor, signaling pathways as well as the array of genes expressed in macrophages that are activated by these glycoconjugates. We discuss the possible implications of such response on the host resistance to T. cruzi infection and the pathogenesis of Chagas disease.  相似文献   

19.
20.
Infection of mouse macrophages with Toxoplasma gondii elicits MAPK activation and IL-12 production, but host cell signaling pathways have not been clearly delineated. Here, we compared macrophage signaling in response to high virulence type I (RH) vs low virulence type II (ME49) strain infection. Tachyzoites of both strains induced p38 MAPK-dependent macrophage IL-12 release, although ME49 elicited 2- to 3-fold more cytokine than RH. IL-12 production was largely restricted to infected cells in each case. RH-induced IL-12 release did not require MyD88, whereas ME49-triggered IL-12 production was substantially dependent on this TLR/IL-1R adaptor molecule. MyD88 was also not required for RH-stimulated p38 MAPK activation, which occurred in the absence of detectable upstream p38 MAPK kinase activity. In contrast, ME49-driven p38 MAPK activation displayed an MyD88-dependent component. This parasite strain also induced MyD88-dependent activation of MKK4, an upstream activator of p38 MAPK. The results suggest that RH triggers MAPK activation and IL-12 production using MyD88-independent signaling, whereas ME49 uses these pathways as well as MyD88-dependent signaling cascades. Differences in host signaling pathways triggered by RH vs ME49 may contribute to the high and low virulence characteristics displayed by these parasite strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号