首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Inflammation has been increasingly studied as part of the pathophysiology of neurodegenerative diseases. Mammalian Ste20-like kinase 1 (Mst1), a key factor of the Hippo pathway, is connected to cell death. Unfortunately, little study has been performed to detect the impact of Mst1 in neuroninflammation. The results indicated that Mst1 expression was upregulated because of LPS treatment. However, the loss of Mst1 sustained BV-2 cell viability and promoted cell survival in the presence of LPS treatment. Molecular investigation assay demonstrated that Mst1 deletion was followed by a drop in the levels of mitochondrial fission via repressing Drp1 expression. However, Drp1 adenovirus transfection reduced the protective impacts of Mst1 knockdown on mitochondrial stress and neuronal dysfunction. Finally, our results illuminated that Mst1 affected Drp1 content and mitochondrial fission in a JNK-dependent mechanism. Reactivation of the JNK axis inhibited Mst1 knockdown-mediated neuronal protection and mitochondrial homeostasis. Altogether, our results indicated that Mst1 upregulation and the activation of JNK-Drp1-mitochondrial fission pathway could be considered as the novel mechanism regulating the progression of neuroninflammation. This finding would pave a new road for the treatment of neurodegenerative diseases via modulating the Mst1-JNK-Drp1-mitochondrial fission axis.  相似文献   

2.
Mitochondrial morphology is controlled by two opposing processes: fusion and fission. Drp1 (dynamin-related protein 1) and hFis1 are two key players of mitochondrial fission, but how Drp1 is recruited to mitochondria and how Drp1-mediated mitochondrial fission is regulated in mammals is poorly understood. Here, we identify the vertebrate-specific protein MIEF1 (mitochondrial elongation factor 1; independently identified as MiD51), which is anchored to the outer mitochondrial membrane. Elevated MIEF1 levels induce extensive mitochondrial fusion, whereas depletion of MIEF1 causes mitochondrial fragmentation. MIEF1 interacts with and recruits Drp1 to mitochondria in a manner independent of hFis1, Mff (mitochondrial fission factor) and Mfn2 (mitofusin 2), but inhibits Drp1 activity, thus executing a negative effect on mitochondrial fission. MIEF1 also interacts with hFis1 and elevated hFis1 levels partially reverse the MIEF1-induced fusion phenotype. In addition to inhibiting Drp1, MIEF1 also actively promotes fusion, but in a manner distinct from mitofusins. In conclusion, our findings uncover a novel mechanism which controls the mitochondrial fusion-fission machinery in vertebrates. As MIEF1 is vertebrate-specific, these data also reveal important differences between yeast and vertebrates in the regulation of mitochondrial dynamics.  相似文献   

3.
4.
Increasing evidence suggests that mitochondrial dysfunction plays a critical role in the development of diabetic kidney disease (DKD), however, its specific pathomechanism remains unclear. A-kinase anchoring protein (AKAP) 1 is a scaffold protein in the AKAP family that is involved in mitochondrial fission and fusion. Here, we show that rats with streptozotocin (STZ)-induced diabetes developed podocyte damage accompanied by AKAP1 overexpression and that AKAP1 closely interacted with the mitochondrial fission enzyme dynamin-related protein 1 (Drp1). At the molecular level, high glucose (HG) promoted podocyte injury and Drp1 phosphorylation at Ser637 as proven by decreased mitochondrial membrane potential, elevated reactive oxygen species generation, reduced adenosine triphosphate synthesis, and increased podocyte apoptosis. Furthermore, the AKAP1 knockdown protected HG-induced podocyte injury and suppressed HG-induced Drp1 phosphorylation at Ser637. AKAP1 overexpression aggravated HG-induced mitochondrial fragmentation and podocyte apoptosis. The coimmunoprecipitation assay showed that HG-induced Drp1 interacted with AKAP1, revealing that AKAP1 could recruit Drp1 from the cytoplasm under HG stimulation. Subsequently, we detected the effect of drp1 phosphorylation on Ser637 by transferring several different Drp1 mutants. We demonstrated that activated AKAP1 promoted Drp1 phosphorylation at Ser637, which promoted the transposition of Drp1 to the surface of the mitochondria and accounts for mitochondrial dysfunction events. These findings indicate that AKAP1 is the main pathogenic factor in the development and progression of HG-induced podocyte injury through the destruction of mitochondrial dynamic homeostasis by regulating Drp1 phosphorylation in human podocytes.  相似文献   

5.
Mitochondria are essential eukaryotic organelles often forming intricate networks. The overall network morphology is determined by mitochondrial fusion and fission. Among the multiple mechanisms that appear to regulate mitochondrial fission, the ER and actin have recently been shown to play an important role by mediating mitochondrial constriction and promoting the action of a key fission factor, the dynamin‐like protein Drp1. Here, we report that the cytoskeletal component septin 2 is involved in Drp1‐dependent mitochondrial fission in mammalian cells. Septin 2 localizes to a subset of mitochondrial constrictions and directly binds Drp1, as shown by immunoprecipitation of the endogenous proteins and by pulldown assays with recombinant proteins. Depletion of septin 2 reduces Drp1 recruitment to mitochondria and results in hyperfused mitochondria and delayed FCCP‐induced fission. Strikingly, septin depletion also affects mitochondrial morphology in Caenorhabditis elegans, strongly suggesting that the role of septins in mitochondrial dynamics is evolutionarily conserved.  相似文献   

6.
The regulation of mitochondrial permeability transition (MPT) is essential for cell survival. Un-controlled opening of the MPT pore is often associated with cell death. Anti-death protein Bcl-2 can block MPT as assessed by the enhanced capacity of mitochondria to accumulate and retain Ca2+. We report here that two proteins of the mitochondrial fission machinery, dynamin-related protein (Drp1) and human mitochondrial fission protein (hFis1), have an antagonistic effect on Bcl-2. Drp1, with the assistance of hFis1, sensitizes cells to MPT by reducing the mitochondrial Ca2+ retention capacity (CRC). While the reduction of CRC by Drp1/hFis1 is linked to mitochondrial fission, the antagonism between Bcl-2 and Drp1 appears to be mediated by mutually exclusive interactions of the two proteins with hFis1. The complexity of protein–protein interactions demonstrated in the present study suggests that in addition to the previously described role of Bcl-2 in the control of apoptosis, Bcl-2 may also participate directly or indirectly in the regulation of mitochondrial fission.  相似文献   

7.
Abstract The dualistic activities of the amyloid beta (Abeta) peptide as a pro-oxidant and ubiquitous constituent of amyloid deposits in Alzheimer's disease plaques and as an antioxidant of purported physiological function has been suggested but the mechanisms are far from being understood. In this report we measure several oxidative stress parameters and signaling cascades in brains of fetal rats subjected to global ischemia in order to evaluate the putative bifunctional properties of the Abeta(1-40) peptide. Intraperitoneal injection of 6 microg Abeta(1-40) into 18-days-old rat fetuses (approximately 3 g body weight) resulted after 24 h in the appearance of the peptide in various fetal organs including brain where it enhanced the levels of glutathione (GSH), glutathione reductase, glutathione peroxidase, and stimulated the levels of pro-survival signaling activities such as Akt serine/threonine kinase, extracellular signal-regulated kinase (ERK) and protein kinase C enzymes. Moreover, pretreatment with Abeta(1-40) reversed the consequences of a transient hypovolemic/hypotensive oxidative stress by restoring GSH levels via its recycling enzymes and by lowering the production of lipid peroxides presumably by activating the aforementioned pro-survival signaling cascades. It also caused a reduction in the number of DAPI-enhanced reactive cells and a decrease in p38 kinase phosphorylation and caspase-9 and -3 activity. These data suggest that pre-exposure to Abeta(1-40) stimulates fetal tolerance to ischemia via regulation of GSH metabolism and as such may be considered as neuroprotective.  相似文献   

8.
S Xu  H Pi  Y Chen  N Zhang  P Guo  Y Lu  M He  J Xie  M Zhong  Y Zhang  Z Yu  Z Zhou 《Cell death & disease》2013,4(3):e540
Mitochondria are critical targets in the hepatotoxicity of cadmium (Cd). Abnormal mitochondrial dynamics have been increasingly implicated in mitochondrial dysfunction in pathophysiological conditions. Therefore, our study aimed to investigate the effects and underlying mechanism of Cd on mitochondrial dynamics during hepatotoxicity. In the L02 liver cell lines, 12 μM cadmium chloride (CdCl2) exposure induced excessive mitochondrial fragmentation as early as 3 h post-treatment with Cd, which preceded the mitochondrial dysfunction such as reactive oxygen species (ROS) overproduction, mitochondrial membrane potential (ΔΨm) loss and ATP reduction. Concurrent to mitochondrial fragmentation, CdCl2 treatment increased the protein levels of dynamin-related protein (Drp1) and promoted the recruitment of Drp1 into mitochondria. Strikingly, mitochondrial fragmentation also occurred in the liver tissue of rats exposed to CdCl2, accompanied by enhanced recruitment of Drp1 into mitochondria. Moreover, in L02 cells, Drp1 silencing could effectively reverse Cd-induced mitochondrial fragmentation and mitochondrial dysfunction. Furthermore, the increased expression and mitochondrial recruitment of Drp1 were tightly related to the disturbance of calcium homeostasis, which could be prevented by both chelating [Ca2+]i and inhibiting [Ca2+]m uptake. Overall, our study indicated that Cd induced Drp1-dependent mitochondrial fragmentation by disturbing calcium homeostasis to promote hepatotoxicity. Manipulation of Drp1 may be the potential avenue for developing novel strategies to protect against cadmium-induced hepatotoxicity.  相似文献   

9.
Microglial activation is known to be an important event during innate immunity, but microglial inflammation is also thought to play a role in the etiology of neurodegenerative diseases. Recently, it was reported that autophagy could influence inflammation and activation of microglia. However, little is known about the regulation of autophagy during microglial activation. In this study, we demonstrated that mitochondrial fission-induced ROS can promote autophagy in microglia. Following LPS-induced autophagy, GFP-LC3 puncta were increased, and this was suppressed by inhibiting mitochondrial fission and mitochondrial ROS. Interestingly, inhibition of mitochondrial fission and mitochondrial ROS also resulted in decreased p62 expression, but Beclin1 and LC3B were unaffected. Taken together, these results indicate that ROS induction due to increased LPS-stimulated mitochondrial fission triggers p62 mediated autophagy in microglial cells. Our findings provide the first important clues towards understanding the correlation between mitochondrial ROS and autophagy.

Abbreviations: Drp1; Dynamin related protein 1, LPS; Lipopolysaccharide, ROS; Reactive Oxygen Species, GFP; Green Fluorescent Protein, CNS; Central Nervous System, AD; Alzheimer’s Disease, PD; Parkinson’s Disease, ALIS; Aggresome-like induced structures, iNOS; inducible nitric oxide synthase, Cox-2; Cyclooxygenase-2, MAPK; Mitogen-activated protein kinase; SODs; Superoxide dismutase, GPXs; Glutathione Peroxidase, Prxs; Peroxiredoxins  相似文献   


10.
11.
Li WW  Zhu M  Lv CZ 《生理科学进展》2011,42(5):347-352
线粒体是一种处于高度运动状态的细胞器,频繁地出现分裂和融合,线粒体分裂和融合的动态过程被称为线粒体动力学。对于神经元来说,线粒体的动力学过程具有十分重要的生物学意义。已知线粒体融合介导蛋白的功能缺失性突变可以导致常染色体显性遗传性视神经萎缩和Charcot-Marie-Tooth病等神经变性疾病。近来发现,在迟发性神经变性疾病中,线粒体动力学的改变也具有重要地位。本文将在线粒体动力学的分子调控以及与细胞死亡的关系、在神经变性疾病中的地位等方面综述这一领域的最新进展。  相似文献   

12.
Ionizing radiation is known to increase intracellular level of reactive oxygen species (ROS) through mitochondrial dysfunction. Although it has been as a basis of radiation-induced genetic instability, the mechanism involving mitochondrial dysfunction remains unclear. Here we studied the dynamics of mitochondrial structure in normal human fibroblast like cells exposed to ionizing radiation. Delayed mitochondrial production was peaked 3 days after irradiation, which was coupled with accelerated mitochondrial fission. We found that radiation exposure accumulated dynamin-related protein 1 (Drp1) to mitochondria. Knocking down of Drp1 expression prevented radiation induced acceleration of mitochondrial fission. Furthermore, knockdown of Drp1 significantly suppressed delayed production of mitochondrial . Since the loss of mitochondrial membrane potential, which was induced by radiation was prevented in cells knocking down of Drp1 expression, indicating that the excessive mitochondrial fission was involved in delayed mitochondrial dysfunction after irradiation.  相似文献   

13.
Porphyromonas gingivalis (P. gingivalis) is a pivotal pathogen of periodontitis. Our previous studies have confirmed that mitochondrial dysfunction in the endothelial cells caused by P. gingivalis was dependent on Drp1, which may be the mechanism of P. gingivalis causing endothelial dysfunction. Nevertheless, the signalling pathway induced the mitochondrial dysfunction remains unclear. The purpose of this study was to investigate the role of the RhoA/ROCK1 pathway in regulating mitochondrial dysfunction caused by P. gingivalis. P. gingivalis was used to infect EA.hy926 cells (endothelial cells). The expression and activation of RhoA and ROCK1 were assessed by western blotting and pull-down assay. The morphology of mitochondria was observed by mitochondrial staining and transmission electron microscopy. Mitochondrial function was measured by ATP content, mitochondrial DNA and mitochondrial permeability transition pore openness. The phosphorylation and translocation of Drp1 were evaluated using western blotting and immunofluorescence. The role of the RhoA/ROCK1 pathway in mitochondrial dysfunction was investigated using RhoA and ROCK1 inhibitors. The activation of RhoA/ROCK1 pathway and mitochondrial dysfunction were observed in P. gingivalis-infected endothelial cells. Furthermore, RhoA or ROCK1 inhibitors partly prevented mitochondrial dysfunction caused by P. gingivalis. The increased phosphorylation and mitochondrial translocation of Drp1 induced by P. gingivalis were both blocked by RhoA and ROCK1 inhibitors. In conclusion, we demonstrate that the RhoA/ROCK1 pathway was involved in mitochondrial dysfunction caused by P. gingivalis by regulating the phosphorylation and mitochondrial translocation of Drp1. Our research illuminated a possible new mechanism by which P. gingivalis promotes endothelial dysfunction.  相似文献   

14.
Chan PH 《Neurochemical research》2004,29(11):1943-1949
Apoptotic cell death pathways have been implicated in acute brain injuries, including cerebral ischemia, brain trauma, and spinal cord injury, and in chronic neurodegenerative diseases. Experimental ischemia and reperfusion models, such as transient focal/global ischemia in rodents, have been thoroughly studied and suggest the involvement of mitochondria and the cell survival/death signaling pathways in cell death/survival cascades. Recent studies have implicated mitochondria-dependent apoptosis involving pro- and anti-apoptotic protein binding, the release of cytochrome c and second mitochondria-derived activator of caspase, the activation of downstream caspases-9 and –3, and DNA fragmentation. Reactive oxygen species are known to be significantly generated in the mitochondrial electron transport chain in the dysfunctional mitochondria during reperfusion after ischemia, and are also implicated in the survival signaling pathway that involves phosphatidylinositol-3-kinase (PI3-K), Akt, and downstream signaling molecules, like Bad, 14-3-3, and the proline-rich Akt substrate (PRAS), and their bindings. Further studies of these survival pathways may provide novel therapeutic strategies for clinical stroke.Special issue dedicated to Lawrence F. Eng.  相似文献   

15.
Mitochondrial dysfunction represents a critical event during the pathogenesis of Parkinson's disease (PD) and expanding evidences demonstrate that an altered balance in mitochondrial fission/fusion is likely an important mechanism leading to mitochondrial and neuronal dysfunction/degeneration. In this study, we investigated whether DJ-1 is involved in the regulation of mitochondrial dynamics and function in neuronal cells. Confocal and electron microscopic analysis demonstrated that M17 human neuroblastoma cells over-expressing wild-type DJ-1 (WT DJ-1 cells) displayed elongated mitochondria while M17 cells over-expressing PD-associated DJ-1 mutants (R98Q, D149A and L166P) (mutant DJ-1 cells) showed significant increase of fragmented mitochondria. Similar mitochondrial fragmentation was also noted in primary hippocampal neurons over-expressing PD-associated mutant forms of DJ-1. Functional analysis revealed that over-expression of PD-associated DJ-1 mutants resulted in mitochondria dysfunction and increased neuronal vulnerability to oxidative stress (H(2) O(2)) or neurotoxin. Further immunoblot studies demonstrated that levels of dynamin-like protein (DLP1), also known as Drp1, a regulator of mitochondrial fission, was significantly decreased in WT DJ-1 cells but increased in mutant DJ-1 cells. Importantly, DLP1 knockdown in these mutant DJ-1 cells rescued the abnormal mitochondria morphology and all associated mitochondria/neuronal dysfunction. Taken together, these studies suggest that DJ-1 is involved in the regulation of mitochondrial dynamics through modulation of DLP1 expression and PD-associated DJ-1 mutations may cause PD by impairing mitochondrial dynamics and function.  相似文献   

16.
17.
Src homology 2 domain-containing protein tyrosine phosphatase substrate-1 (SHPS-1), also known as Signal-regulatory protein alpha (SIRPα) or SIRPA is a transmembrane protein that is predominantly expressed in neurons, dendritic cells, and macrophages. This study was conducted to investigate the role of SHPS-1 in the oxidative stress and brain damage induced by acute focal cerebral ischemia. Wild-type (WT) and SHPS-1 mutant (MT) mice were subjected to middle cerebral artery occlusion (60 min) followed by reperfusion. SHPS-1 MT mice had significantly reduced infarct volumes and improved neurological function after brain ischemia. In addition, neural injury and oxidative stress were inhibited in SHPS-1 MT mice. The mRNA and protein levels of the antioxidant genes nuclear factor-E2-related factor 2 (Nrf2) and heme oxygenase 1 were up-regulated in SHPS-1 MT mice. The SHPS-1 mutation suppressed the phosphorylation of SHP-1 and SHP-2 and increased the phosphorylation of Akt and GSK3β. These results provide the first demonstration that SHPS-1 plays an important role in the oxidative stress and brain injury induced by acute cerebral ischemia. The activation of Akt signaling and the up-regulation of Nrf2 and heme oxygenase 1 likely account for the protective effects that were observed in the SHPS-1 MT mice.  相似文献   

18.
Mitochondria form intricate networks through fission and fusion events. Here, we identify mitochondrial dynamics proteins of 49 and 51 kDa (MiD49 and MiD51, respectively) anchored in the mitochondrial outer membrane. MiD49/51 form foci and rings around mitochondria similar to the fission mediator dynamin-related protein 1 (Drp1). MiD49/51 directly recruit Drp1 to the mitochondrial surface, whereas their knockdown reduces Drp1 association, leading to unopposed fusion. Overexpression of MiD49/51 seems to sequester Drp1 from functioning at mitochondria and cause fused tubules to associate with actin. Thus, MiD49/51 are new mediators of mitochondrial division affecting Drp1 action at mitochondria.  相似文献   

19.
20.
Context: Yes-associated protein (Yap) has been linked to several cardiovascular disorders, but the role of this protein in septic cardiomyocytes is not fully understood.

Objective: The aim of our study was to explore the influence of Yap in septic cardiomyopathy in vivo and in vitro.

Materials and methods: In the current study, Yap transgenic mice and Yap adenovirus-mediated gain-of-function assays were used in an LPS-established septic cardiomyopathy model. Mitochondrial function and mitochondrial fission were determined through western blotting, immunofluorescence analysis and ELISA.

Results: Our results demonstrated that Yap expression was downregulated by LPS, whereas Yap overexpression sustained cardiac function and attenuated cardiomyocyte death. The functional exploration revealed that LPS treatment induced cardiomyocyte mitochondrial stress, as manifested by mitochondrial superoxide overproduction, cardiomyocyte ATP deprivation, and caspase-9 apoptosis activation. Furthermore, we demonstrated that LPS-mediated mitochondrial damage was controlled by mitochondrial fission. However, Yap overexpression reduced mitochondrial fission and therefore improved mitochondrial function. A molecular investigation revealed that Yap overexpression inhibited mitochondrial fission by reversing ERK activity, and the inhibition of the ERK pathway promoted DRP1 upregulation and thereby mediated mitochondrial fission activation in the presence of Yap overexpression.

Conclusions: Overall, our results suggest that the cause of septic cardiomyopathy appears to be connected with Yap downregulation. The overexpression of Yap can attenuate myocardial inflammation injury through the reduction of DRP1-related mitochondrial fission in an ERK pathway activation-dependent manner.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号