首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
分子伴侣能够与其他蛋白质的不稳定构象相结合并使其稳定.它的功能之一是能够帮助蛋白质进行正确的折叠与组装.最新研究发现,在肠道致病菌的周质空间中存在着酸性条件下能帮助周质蛋白复性的分子伴侣HdeA和HdeB.HdeA在极端酸性的胃部环境中由二聚体迅速解离成具有伴侣活性的单体,HdeA单体能够和变性的底物蛋白结合防止它们酸诱导聚集,从而保护肠道致病菌安全到达肠道.本文对肠道致病菌的耐酸机制进行了总结,最后对 HdeA和HdeB作用机制的研究近况进行综述,最后对HdeA和HdeB以后的研究方向进行了展望.  相似文献   

2.
We cloned, expressed, and purified the hdeB gene product, which belongs to the hdeAB acid stress operon. We extracted HdeB from bacteria by the osmotic-shock procedure and purified it to homogeneity by ion-exchange chromatography and hydroxyapatite chromatography. Its identity was confirmed by mass spectrometry analysis. HdeB has a molecular mass of 10 kDa in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, which matches its expected molecular mass. We purified the acid stress chaperone HdeA in parallel in order to compare the two chaperones. The hdeA and hdeB mutants both display reduced viability upon acid stress, and only the HdeA/HdeB expression plasmid can restore their viability to close to the wild-type level, suggesting that both proteins are required for optimal protection of the bacterial periplasm against acid stress. Periplasmic extracts from both mutants aggregate at acidic pH, suggesting that HdeA and HdeB are required for protein solubilization. At pH 2, the aggregation of periplasmic extracts is prevented by the addition of HdeA, as previously reported, but is only slightly reduced by HdeB. At pH 3, however, HdeB is more efficient than HdeA in preventing periplasmic-protein aggregation. The solubilization of several model substrate proteins at acidic pH supports the hypothesis that, in vitro, HdeA plays a major role in protein solubilization at pH 2 and that both proteins are involved in protein solubilization at pH 3. Like HdeA, HdeB exposes hydrophobic surfaces at acidic pH, in accordance with the appearance of its chaperone properties at acidic pH. HdeB, like HdeA, dissociates from dimers at neutral pH into monomers at acidic pHs, but its dissociation is complete at pH 3 whereas that of HdeA is complete at a more acidic pH. Thus, we can conclude that Escherichia coli possesses two acid stress chaperones that prevent periplasmic-protein aggregation at acidic pH.  相似文献   

3.
The extremely acidic environment of the mammalian stomach, with a pH range usually between 1 and 3, represents a stressful challenge for enteric pathogenic bacteria such as Escherichia coli before they enter into the intestine. The hdeA gene of E. coli was found to be acid inducible and was revealed by genetic studies to be important for the acid survival of the strain. This study was performed in an attempt to characterize the mechanism of the activity of the HdeA protein. Our data provided in this report strongly suggest that HdeA employs a novel strategy to modulate its chaperone activity: it possesses an ordered conformation that is unable to bind denatured substrate proteins under normal physiological conditions (i.e. at neutral pH) and transforms into a globally disordered conformation that is able to bind substrate proteins under stress conditions (i.e. at a pH below 3). Furthermore, our data indicate that HdeA exposes hydrophobic surfaces that appear to be involved in the binding of denatured substrate proteins at extremely low pH values. In light of our observations, models are proposed to explain the action of HdeA in both a physiological and a molecular context.  相似文献   

4.
The acid stress chaperones HdeA and HdeB of Escherichia coli prevent the aggregation of periplasmic proteins at acidic pH. We show in this report that they also form mixed aggregates with proteins that have failed to be solubilized at acidic pH and allow their subsequent solubilization at neutral pH. HdeA, HdeB, and HdeA and HdeB together display an increasing efficiency for the solubilization of protein aggregates at pH 3. They are less efficient for the solubilization of aggregates at pH 2, whereas HdeB is the most efficient. Increasing amounts of periplasmic proteins draw increasing amounts of chaperone into pellets, suggesting that chaperones co-aggregate with their substrate proteins. We observed a decrease in the size of protein aggregates in the presence of HdeA and HdeB, from very high molecular mass aggregates to 100-5000-kDa species. Moreover, a marked decrease in the exposed hydrophobicity of aggregated proteins in the presence of HdeA and HdeB was revealed by 1,1'-bis(4-anilino)naphtalene-5,5'-disulfonic acid binding experiments. In vivo, during the recovery at neutral pH of acid stressed bacterial cells, HdeA and HdeB allow the solubilization and renaturation of protein aggregates, including those formed by the maltose receptor MalE, the oligopeptide receptor OppA, and the histidine receptor HisJ. Thus, HdeA and HdeB not only help to maintain proteins in a soluble state during acid treatment, as previously reported, but also assist, both in vitro and in vivo, in the solubilization at neutral pH of mixed protein-chaperone aggregates formed at acidic pH, by decreasing the size of protein aggregates and the exposed hydrophobicity of aggregated proteins.  相似文献   

5.
The periplasmic chaperones HdeA and HdeB are known to be important for cell survival at low pH (pH < 3) in Escherichia coli and Shigella spp. Here we investigated the roles of HdeA and HdeB in the survival of various enterohemorrhagic E. coli (EHEC) following exposure to pH 2.0. Similar to K-12 strains, the acid protections conferred by HdeA and HdeB in EHEC O145 were significant: loss of HdeA and HdeB led to over 100- to 1,000-fold reductions in acid survival, depending on the growth condition of prechallenge cells. However, this protection was much less in E. coli O157:H7 strains. Deletion of hdeB did not affect the acid survival of cells, and deletion of hdeA led to less than a 5-fold decrease in survival. Sequence analysis of the hdeAB operon revealed a point mutation at the putative start codon of the hdeB gene in all 26 E. coli O157:H7 strains analyzed, which shifted the ATG start codon to ATA. This mutation correlated with the lack of HdeB in E. coli O157:H7; however, the plasmid-borne O157-hdeB was able to restore partially the acid resistance in an E. coli O145ΔhdeAB mutant, suggesting the potential function of O157-HdeB as an acid chaperone. We conclude that E. coli O157:H7 strains have evolved acid survival strategies independent of the HdeA/B chaperones and are more acid resistant than nonpathogenic K-12 for cells grown under nonfavorable culturing conditions such as in Luria-Bertani no-salt broth at 28°C. These results suggest a divergent evolution of acid resistance mechanisms within E. coli.  相似文献   

6.
The extremely acidic environment of the mammalian stomach (pH 1-3) represents a stressful challenge for enteric pathogenic bacteria, including Escherichia coli, Shigella and Brucella. The hdeA (hns-dependent expression A) gene was found to be crucial for the survival of these enteric bacteria under extremely low pH conditions. We recently demonstrated that HdeA is able to exhibit chaperone-like activity exclusively within the stomach pH range by transforming from a well-folded conformation at higher pH values (above pH 3) into an unfolded conformation at extremely low pH values (below pH 3). This study was performed to characterize the action mechanisms and underlying specific structural features for HdeA to function in this unfolded conformation. In the present study, we demonstrate that the conserved 'amphiphilic' feature of HdeA, i.e. the exposure of the conserved hydrophobic region and highly charged terminal regions, is essential for exhibiting chaperone-like activity under extremely low pH conditions. Mutations that disrupt this amphiphilic feature markedly reduced the chaperone-like activity of HdeA. The results also strongly suggest that this acid-induced chaperone-like activity of HdeA is crucial for acid resistance of the enteric bacteria. Moreover, our new understanding of this amphiphilic structural feature of HdeA helps to better interpret how this unfolded (disordered) conformation could be functionally active.  相似文献   

7.
The extremely acidic environment of the mammalian stomach not only serves to facilitate food digestion but also acts as a natural barrier against infections of food-borne pathogens. Many pathogenic bacteria, such as enterohemorrhagic Escherichia coli, can breach this host defense and cause severe diseases. These pathogens have evolved multiple intricate strategies to overcome the bactericidal activity of acids. In particular, recent studies have uncovered the central roles of two periplasmic chaperones, HdeA and HdeB, in protecting enteric bacteria from extremely acidic conditions. Here, we review recent advances in the understanding of the acid resistance mechanisms of Gram-negative bacteria and focus on the mechanisms of HdeA and HdeB in preventing acid-induced protein aggregation and facilitating protein refolding following pH neutralization.  相似文献   

8.
Escherichia coli and Gram-negative bacteria that live in the human gut must be able to tolerate rapid and large changes in environmental pH. Low pH irreversibly denatures and precipitates many bacterial proteins. While cytoplasmic proteins are well buffered against such swings, periplasmic proteins are not. Instead, it appears that some bacteria utilize chaperone proteins that stabilize periplasmic proteins, preventing their precipitation. Two highly expressed and related proteins, HdeA and HdeB, have been identified as acid-activated chaperones. The structure of HdeA is known and a mechanism for activation has been proposed. In this model, dimeric HdeA dissociates at low pH, and the exposed dimeric interface binds exposed hydrophobic surfaces of acid-denatured proteins, preventing their irreversible aggregation. We now report the structure and biophysical characterization of the HdeB protein. The monomer of HdeB shares a similar structure with HdeA, but its dimeric interface is different in composition and spatial location. We have used fluorescence to study the behavior of HdeB as pH is lowered, and like HdeA, it dissociates to monomers. We have identified one of the key intersubunit interactions that controls pH-induced monomerization. Our analysis identifies a structural interaction within the HdeB monomer that is disrupted as pH is lowered, leading to enhanced structural flexibility.  相似文献   

9.
Enteric bacteria such as Escherichia coli utilize various acid response systems to counteract the acidic environment of the mammalian stomach. To protect their periplasmic proteome against rapid acid-mediated damage, bacteria contain the acid-activated periplasmic chaperones HdeA and HdeB. Activation of HdeA at pH 2 was shown to correlate with its acid-induced dissociation into partially unfolded monomers. In contrast, HdeB, which has high structural similarities to HdeA, shows negligible chaperone activity at pH 2 and only modest chaperone activity at pH 3. These results raised intriguing questions concerning the physiological role of HdeB in bacteria, its activation mechanism, and the structural requirements for its function as a molecular chaperone. In this study, we conducted structural and biochemical studies that revealed that HdeB indeed works as an effective molecular chaperone. However, in contrast to HdeA, whose chaperone function is optimal at pH 2, the chaperone function of HdeB is optimal at pH 4, at which HdeB is still fully dimeric and largely folded. NMR, analytical ultracentrifugation, and fluorescence studies suggest that the highly dynamic nature of HdeB at pH 4 alleviates the need for monomerization and partial unfolding. Once activated, HdeB binds various unfolding client proteins, prevents their aggregation, and supports their refolding upon subsequent neutralization. Overexpression of HdeA promotes bacterial survival at pH 2 and 3, whereas overexpression of HdeB positively affects bacterial growth at pH 4. These studies demonstrate how two structurally homologous proteins with seemingly identical in vivo functions have evolved to provide bacteria with the means for surviving a range of acidic protein-unfolding conditions.  相似文献   

10.
HdeA is an acid-stress chaperone that operates in the periplasm of various strains of pathogenic gram-negative bacteria. Its primary function is to prevent irreversible aggregation of other periplasmic proteins when the bacteria enter the acidic environment of the stomach after contaminated food is ingested; its role is therefore to help the bacteria survive long enough to enter and colonize the intestines. The mechanism of operation of HdeA is unusual in that this helical homodimer is inactive when folded at neutral pH but becomes activated at low pH after the dimer dissociates and partially unfolds. Studies with chemical reducing agents previously suggested that the intramolecular disulfide bond is important for maintaining residual structure in HdeA at low pH and may be responsible for positioning exposed hydrophobic residues together for the purpose of binding unfolded client proteins. In order to explore its role in HdeA structure and chaperone function we performed a conservative cysteine to serine mutation of the disulfide. We found that, although residual structure is greatly diminished at pH 2 without the disulfide, it is not completely lost; conversely, the mutant is almost completely random coil at pH 6. Aggregation assays showed that mutated HdeA, although less successful as a chaperone than wild type, still maintains a surprising level of function. These studies highlight that we still have much to learn about the factors that stabilize residual structure at low pH and the role of disulfide bonds.  相似文献   

11.
Escherichia coli has an ability, rare among the Enterobacteriaceae, to survive extreme acid stress under various host (e.g., human stomach) and nonhost (e.g., apple cider) conditions. Previous microarray studies have exposed a cluster of 12 genes at 79 centisomes collectively called an acid fitness island (AFI). Four AFI genes, gadA, gadX, gadW, and gadE, were already known to be involved in an acid resistance system that consumes an intracellular proton through the decarboxylation of glutamic acid. However, roles for the other eight AFI gene products were either unknown or subject to conflicting findings. Two new aspects of acid resistance are described that require participation of five of the remaining eight AFI genes. YhiF (a putative regulatory protein), lipoprotein Slp, and the periplasmic chaperone HdeA protected E. coli from organic acid metabolites produced during fermentation once the external pH was reduced to pH 2.5. HdeA appears to handle protein damage caused when protonated organic acids diffuse into the cell and dissociate, thereby decreasing internal pH. In contrast, YhiF- and Slp-dependent systems appear to counter the effects of the organic acids themselves, specifically succinate, lactate, and formate, but not acetate. A second phenomenon was defined by two other AFI genes, yhiD and hdeD, encoding putative membrane proteins. These proteins participate in an acid resistance mechanism exhibited only at high cell densities (>10(8) CFU per ml). Density-dependent acid resistance does not require any demonstrable secreted factor and may involve cell contact-dependent activation. These findings further define the complex physiology of E. coli acid resistance.  相似文献   

12.
During aerobic growth of Escherichia coli, expression of catabolic enzymes and envelope and periplasmic proteins is regulated by pH. Additional modes of pH regulation were revealed under anaerobiosis. E. coli K-12 strain W3110 was cultured anaerobically in broth medium buffered at pH 5.5 or 8.5 for protein identification on proteomic two-dimensional gels. A total of 32 proteins from anaerobic cultures show pH-dependent expression, and only four of these proteins (DsbA, TnaA, GatY, and HdeA) showed pH regulation in aerated cultures. The levels of 19 proteins were elevated at the high pH; these proteins included metabolic enzymes (DhaKLM, GapA, TnaA, HisC, and HisD), periplasmic proteins (ProX, OppA, DegQ, MalB, and MglB), and stress proteins (DsbA, Tig, and UspA). High-pH induction of the glycolytic enzymes DhaKLM and GapA suggested that there was increased fermentation to acids, which helped neutralize alkalinity. Reporter lac fusion constructs showed base induction of sdaA encoding serine deaminase under anaerobiosis; in addition, the glutamate decarboxylase genes gadA and gadB were induced at the high pH anaerobically but not with aeration. This result is consistent with the hypothesis that there is a connection between the gad system and GabT metabolism of 4-aminobutanoate. On the other hand, 13 other proteins were induced by acid; these proteins included metabolic enzymes (GatY and AckA), periplasmic proteins (TolC, HdeA, and OmpA), and redox enzymes (GuaB, HmpA, and Lpd). The acid induction of NikA (nickel transporter) is of interest because E. coli requires nickel for anaerobic fermentation. The position of the NikA spot coincided with the position of a small unidentified spot whose induction in aerobic cultures was reported previously; thus, NikA appeared to be induced slightly by acid during aeration but showed stronger induction under anaerobic conditions. Overall, anaerobic growth revealed several more pH-regulated proteins; in particular, anaerobiosis enabled induction of several additional catabolic enzymes and sugar transporters at the high pH, at which production of fermentation acids may be advantageous for the cell.  相似文献   

13.
Periplasmic proteins of Gram-negative bacteria like Escherichia coli are subjected to immediate affect of environmental fluctuation that may unfold proteins, due to the permeability of the outer membrane to small molecules. They are thus supposedly protected by certain molecular chaperones. Nevertheless, no homologues of typical molecular chaperones have so far been found in periplasm, and the recently reported chaperone activities of periplasmic protein disulfide isomerase (PDI) and peptidyl prolyl isomerase (PPI) seem to be too weak to satisfy such assumed needs. In an attempt to reveal whether periplasmic proteins exhibit certain unusual properties, we discovered that such proteins as a whole are highly resistant to aggregation under a wide variety of denaturing conditions. Furthermore, in an effort to unveil the nature behind this phenomenon we purified and examined four prominent periplasmic proteins. Our results demonstrate that these proteins unfold at rather mild denaturing conditions and expose hydrophobic surfaces during such unfolding process, but hardly form complexes with a typical molecular chaperone. Based on these observations, we propose that the periplasmic proteins have been evolved to resist the formation of aggregates when subjected to various denaturing conditions and molecular chaperones may thus not be needed in periplasm.  相似文献   

14.
HdeA is a periplasmic chaperone that is rapidly activated upon shifting the pH to acidic conditions. This activation is thought to involve monomerization of HdeA. There is evidence that monomerization and partial unfolding allow the chaperone to bind to proteins denatured by low pH, thereby protecting them from aggregation. We analyzed the acid-induced unfolding of HdeA using NMR spectroscopy and fluorescence measurements, and obtained experimental evidence suggesting a complex mechanism in HdeA's acid-induced unfolding pathway, as previously postulated from molecular dynamics simulations. Counterintuitively, dissociation constant measurements show a stabilization of the HdeA dimer upon exposure to mildly acidic conditions. We provide experimental evidence that protonation of Glu37, a glutamate residue embedded in a hydrophobic pocket of HdeA, is important in controlling HdeA stabilization and thus the acid activation of this chaperone. Our data also reveal a sharp transition from folded dimer to unfolded monomer between pH 3 and pH 2, and suggest the existence of a low-populated, partially folded intermediate that could assist in chaperone activation or function. Overall, this study provides a detailed experimental investigation into the mechanism by which HdeA unfolds and activates.  相似文献   

15.
Attempts were made to engineer the periplasm of Escherichia coli to an expression compartment of heterologous proteins in their native conformation. As a first approach the low-molecular-size additive L-arginine and the redox compound glutathione (GSH) were added to the culture medium. Addition of 0.4 M L-arginine and 5 mM reduced GSH increased the yield of a native tissue-type plasminogen activator variant (rPA), consisting of the kringle-2 and the protease domain, and a single-chain antibody fragment (scFv) up to 10- and 37-fold, respectively. A variety of other medium additives also had positive effects on the yield of rPA. In a second set of experiments, the effects of cosecreted ATP-independent molecular chaperones on the yields of native therapeutic proteins were investigated. At optimized conditions, cosecretion of E. coli DnaJ or murine Hsp25 increased the yield of native rPA by a factor of 170 and 125, respectively. Cosecretion of DnaJ also dramatically increased the amount of a second model protein, native proinsulin, in the periplasm. The results of this study are anticipated to initiate a series of new approaches to increase the yields of native, disulfide-bridged, recombinant proteins in the periplasm of E. coli.  相似文献   

16.
17.
HdeA is a periplasmic chaperone found in several gram‐negative pathogenic bacteria that are linked to millions of cases of dysentery per year worldwide. After the protein becomes activated at low pH, it can bind to other periplasmic proteins, protecting them from aggregation when the bacteria travel through the stomach on their way to colonize the intestines. It has been argued that one of the major driving forces for HdeA activation is the protonation of aspartate and glutamate side chains. The goal for this study, therefore, was to investigate, at the atomic level, the structural impact of this charge neutralization on HdeA during the transition from near‐neutral conditions to pH 3.0, in preparation for unfolding and activation of its chaperone capabilities. NMR spectroscopy was used to measure pKa values of Asp and Glu residues and monitor chemical shift changes. Measurements of R2/R1 ratios from relaxation experiments confirm that the protein maintains its dimer structure between pH 6.0 and 3.0. However, calculated correlation times and changes in amide protection from hydrogen/deuterium exchange experiments provide evidence for a loosening of the tertiary and quaternary structures of HdeA; in particular, the data indicate that the dimer structure becomes progressively weakened as the pH decreases. Taken together, these results provide insight into the process by which HdeA is primed to unfold and carry out its chaperone duties below pH 3.0, and it also demonstrates that neutralization of aspartate and glutamate residues is not likely to be the sole trigger for HdeA dissociation and unfolding.  相似文献   

18.
HdeA is a small chaperone found in the periplasm of several common pathogenic bacteria (Escherichia coli, Shigella flexneri and Brucella abortus) which are the leading causes of dysentery worldwide, especially in developing countries. Its job is to protect other periplasmic proteins from aggregating as the bacteria pass through the low pH environment of the human stomach on their way to infect the intestines. HdeA is an inactive folded dimer at neutral pH, but becomes a disordered active monomer at pH < 3. To initiate NMR characterization of HdeA at pH 6, 94 % of the backbone and 86 % of the side chain chemical shifts have been assigned. The loop linking helices B and C remains largely unassigned due to missing peaks in the 1H–15N HSQC and other spectra, most likely due to intermediate timescale chemical exchange. Many of the weakest intensity backbone peaks correspond to residues that surround this loop within the tertiary structure. Assignment experiments have therefore helped to provide preliminary clues about the region of the protein that may be most responsible for initiating unfolding as the pH drops, and constitute an important first step in improving our understanding of, and ultimately combatting, HdeA activity.  相似文献   

19.
The X-ray crystal structure of the Escherichia coli stress response protein HDEA has been determined at 2.0 A resolution. The single domain alpha-helical protein is found in the periplasmic space, where it supports an acid resistance phenotype essential for infectivity of enteric bacterial pathogens, such as Shigella and E. coli. Functional studies demonstrate that HDEA is activated by a dimer-to-monomer transition at acidic pH, leading to suppression of aggregation by acid-denatured proteins. We suggest that HDEA may support chaperone-like functions during the extremely acidic conditions.  相似文献   

20.
Cytoplasmic pH and periplasmic pH of Escherichia coli cells in suspension were observed with 4-s time resolution using fluorimetry of TorA-green fluorescent protein mutant 3* (TorA-GFPmut3*) and TetR-yellow fluorescent protein. Fluorescence intensity was correlated with pH using cell suspensions containing 20 mM benzoate, which equalizes the cytoplasmic pH with the external pH. When the external pH was lowered from pH 7.5 to 5.5, the cytoplasmic pH fell within 10 to 20 s to pH 5.6 to 6.5. Rapid recovery occurred until about 30 s after HCl addition and was followed by slower recovery over the next 5 min. As a control, KCl addition had no effect on fluorescence. In the presence of 5 to 10 mM acetate or benzoate, recovery from external acidification was diminished. Addition of benzoate at pH 7.0 resulted in cytoplasmic acidification with only slow recovery. Periplasmic pH was observed using TorA-GFPmut3* exported to the periplasm through the Tat system. The periplasmic location of the fusion protein was confirmed by the observation that osmotic shock greatly decreased the periplasmic fluorescence signal by loss of the protein but had no effect on the fluorescence of the cytoplasmic protein. Based on GFPmut3* fluorescence, the pH of the periplasm equaled the external pH under all conditions tested, including rapid acid shift. Benzoate addition had no effect on periplasmic pH. The cytoplasmic pH of E. coli was measured with 4-s time resolution using a method that can be applied to any strain construct, and the periplasmic pH was measured directly for the first time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号