首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Iron is an essential nutrient for cells. It is unknown how iron, after its import into the cytosol, is specifically delivered to iron-dependent processes in various cellular compartments. Here, we identify an essential function of the conserved cytosolic monothiol glutaredoxins Grx3 and Grx4 in intracellular iron trafficking and sensing. Depletion of Grx3/4 specifically impaired all iron-requiring reactions in the cytosol, mitochondria, and nucleus, including the synthesis of Fe/S clusters, heme, and di-iron centers. These defects were caused by impairment of iron insertion into proteins and iron transfer to mitochondria, indicating that intracellular iron is not bioavailable, despite highly elevated cytosolic levels. The crucial task of Grx3/4 is mediated by a bridging, glutathione-containing Fe/S center that functions both as an iron sensor and in intracellular iron delivery. Collectively, our study uncovers an important role of monothiol glutaredoxins in cellular iron metabolism, with a surprising connection to cellular redox and sulfur metabolisms.  相似文献   

4.
5.
Two novel monothiol glutaredoxins from yeast (ScGrx6 and ScGrx7) were identified and analyzed in vitro. Both proteins are highly suited to study structure-function relationships of glutaredoxin subclasses because they differ from all monothiol glutaredoxins investigated so far and share features with dithiol glutaredoxins. ScGrx6 and ScGrx7 are, for example, the first monothiol glutaredoxins showing an activity in the standard glutaredoxin transhydrogenase assay with glutathione and bis-(2-hydroxyethyl)-disulfide. Steady-state kinetics of ScGrx7 with glutathione and cysteine-glutathione disulfide are similar to dithiol glutaredoxins and are consistent with a ping-pong mechanism. In contrast to most other glutaredoxins, ScGrx7 and ScGrx6 are able to dimerize noncovalently. Furthermore, ScGrx6 is the first monothiol glutaredoxin shown to directly bind an iron-sulfur cluster. The cluster can be stabilized by reduced glutathione, and its loss results in the conversion of tetramers to dimers. ScGrx7 does not bind metal ions but can be covalently modified in Escherichia coli leading to a mass shift of 1090 +/- 14 Da. What might be the structural requirements that cause the different properties? We hypothesize that a G(S/T)x3 insertion between a highly conserved lysine residue and the active site cysteine residue could be responsible for the abrogated transhydrogenase activity of many monothiol glutaredoxins. In addition, we suggest an active site motif without proline residues that could lead to the identification of further metal binding glutaredoxins. Such different properties presumably reflect diverse functions in vivo and might therefore explain why there are at least seven glutaredoxins in yeast.  相似文献   

6.
Yeast cells contain a family of three monothiol glutaredoxins: Grx3, 4, and 5. Absence of Grx5 leads to constitutive oxidative damage, exacerbating that caused by external oxidants. Phenotypic defects associated with the absence of Grx5 are suppressed by overexpression of SSQ1 and ISA2, two genes involved in the synthesis and assembly of iron/sulfur clusters into proteins. Grx5 localizes at the mitochondrial matrix, like other proteins involved in the synthesis of these clusters, and the mature form lacks the first 29 amino acids of the translation product. Absence of Grx5 causes: 1) iron accumulation in the cell, which in turn could promote oxidative damage, and 2) inactivation of enzymes requiring iron/sulfur clusters for their activity. Reduction of iron levels in grx5 null mutants does not restore the activity of iron/sulfur enzymes, and cell growth defects are not suppressed in anaerobiosis or in the presence of disulfide reductants. Hence, Grx5 forms part of the mitochondrial machinery involved in the synthesis and assembly of iron/sulfur centers.  相似文献   

7.
Increasing evidence suggests that IscS, a cysteine desulfurase, provides sulfur for assembly of transient iron-sulfur clusters in IscU. IscU appears to act as a scaffold and eventually transfers the assembled clusters to target proteins. However, the iron donor for the iron-sulfur cluster assembly largely remains elusive. Here we find that Escherichia coli IscU fails to assemble iron-sulfur clusters when the accessible "free" iron in solution is limited by an iron chelator sodium citrate. Remarkably, IscA, an iron-sulfur cluster assembly protein with an iron association constant of 3.0 x 10(19) m(-1), is able to overcome the iron limitation due to sodium citrate and deliver iron for the IscS-mediated iron-sulfur cluster assembly in IscU. Substitution of the invariant cysteine residues Cys-99 or Cys-101 in IscA with serine completely abolishes the iron binding activity of the protein. The IscA mutants that fail to bind iron are unable to mediate iron delivery for the iron-sulfur cluster assembly in IscU under the limited accessible "free" iron conditions. The results suggest that IscA is capable of recruiting intracellular iron and providing iron for the iron-sulfur cluster assembly in IscU in cells in which the accessible "free" iron content is probably restricted.  相似文献   

8.
Iron-sulfur proteins play an essential role in a variety of biologic processes and exist in multiple cellular compartments. The biogenesis of these proteins has been the subject of extensive investigation, and particular focus has been placed on the pathways that assemble iron-sulfur clusters in the different cellular compartments. Iron-only hydrogenase-like protein 1 (IOP1; also known as nuclear prelamin A recognition factor like protein, or NARFL) is a human protein that is homologous to Nar1, a protein in Saccharomyces cerevisiae that, in turn, is an essential component of the cytosolic iron-sulfur protein assembly pathway in yeast. Previous siRNA-induced knockdown studies using mammalian cells point to a similar role for IOP1 in mammals. In the present studies, we pursued this further by knocking out Iop1 in Mus musculus. We find that Iop1 knock-out results in embryonic lethality before embryonic day 10.5. Acute, inducible global knock-out of Iop1 in adult mice results in lethality and significantly diminished activity of cytosolic aconitase, an iron-sulfur protein, in liver extracts. Inducible knock-out of Iop1 in mouse embryonic fibroblasts results in diminished activity of cytosolic but not mitochondrial aconitase and loss of cell viability. Therefore, just as with knock-out of Nar1 in yeast, we find that knock-out of Iop1/Narfl in mice results in lethality and defective cytosolic iron-sulfur cluster assembly. The findings demonstrate an essential role for IOP1 in this pathway.  相似文献   

9.
Protein-bound dinitrosyl iron complexes (DNICs) have been observed in prokaryotic and eukaryotic cells under nitric oxide (NO) stress. The identity of proteins that bind DNICs, however, still remains elusive. Here we demonstrate that iron-sulfur proteins are the major source of protein-bound DNICs formed in Escherichia coli cells under NO stress. Expression of recombinant iron-sulfur proteins, but not proteins without iron-sulfur clusters, almost doubles the amount of protein-bound DNICs formed in E. coli cells after NO exposure. Purification of recombinant proteins from the NO-exposed E. coli cells further confirms that iron-sulfur proteins, but not proteins without iron-sulfur clusters, are modified, forming protein-bound DNICs. Deletion of the iron-sulfur cluster assembly proteins IscA and SufA to block the [4Fe-4S] cluster biogenesis in E. coli cells largely eliminates the NO-mediated formation of protein-bound DNICs, suggesting that iron-sulfur clusters are mainly responsible for the NO-mediated formation of protein-bound DNICs in cells. Furthermore, depletion of the "chelatable iron pool" in wild-type E. coli cells effectively removes iron-sulfur clusters from proteins and concomitantly diminishes the NO-mediated formation of protein-bound DNICs, indicating that iron-sulfur clusters in proteins constitute at least part of the chelatable iron pool in cells.  相似文献   

10.
11.
12.
13.
14.
Cardiolipin (CL) is the signature phospholipid of mitochondrial membranes, where it is synthesized locally and plays a critical role in mitochondrial bioenergetic functions. The importance of CL in human health is underscored by the observation that perturbation of CL biosynthesis causes the severe genetic disorder Barth syndrome. To fully understand the cellular response to the loss of CL, we carried out genome-wide expression profiling of the yeast CL mutant crd1Δ. Our results show that the loss of CL in this mutant leads to increased expression of iron uptake genes accompanied by elevated levels of mitochondrial iron and increased sensitivity to iron and hydrogen peroxide. Previous studies have shown that increased mitochondrial iron levels result from perturbations in iron-sulfur (Fe-S) cluster biogenesis. Consistent with an Fe-S defect, deletion of ISU1, one of two ISU genes that encode the mitochondrial Fe-S scaffolding protein essential for the synthesis of Fe-S clusters, led to synthetic growth defects with the crd1Δ mutant. We further show that crd1Δ cells have reduced activities of mitochondrial Fe-S enzymes (aconitase, succinate dehydrogenase, and ubiquinol-cytochrome c oxidoreductase), as well as cytosolic Fe-S enzymes (sulfite reductase and isopropylmalate isomerase). Increased expression of ATM1 or YAP1 did not rescue the Fe-S defects in crd1Δ. These findings show for the first time that CL is required for Fe-S biogenesis to maintain mitochondrial and cellular iron homeostasis.  相似文献   

15.
16.
FeS cluster biogenesis is an essential process in virtually all forms of life. Complex protein machineries that are conserved from bacteria through higher eukaryotes facilitate assembly of the FeS cofactor in proteins. In the last several years, significant strides have been made in our understanding of FeS cluster assembly and the functional overlap of this process with cellular iron homeostasis. This minireview summarizes the present understanding of the cytosolic iron-sulfur cluster assembly (CIA) system in eukaryotes, with a focus on information gained from studies in budding yeast and mammalian systems.  相似文献   

17.
A number of bacterial species, mostly proteobacteria, possess monothiol glutaredoxins homologous to the Saccharomyces cerevisiae mitochondrial protein Grx5, which is involved in iron-sulphur cluster synthesis. Phylogenetic profiling is used to predict that bacterial monothiol glutaredoxins also participate in the iron-sulphur cluster (ISC) assembly machinery, because their phylogenetic profiles are similar to the profiles of the bacterial homologues of yeast ISC proteins. High evolutionary co-occurrence is observed between the Grx5 homologues and the homologues of the Yah1 ferredoxin, the scaffold proteins Isa1 and Isa2, the frataxin protein Yfh1 and the Nfu1 protein. This suggests that a specific functional interaction exists between these ISC machinery proteins. Physical interaction analyses using low-definition protein docking predict the formation of strong and specific complexes between Grx5 and several components of the yeast ISC machinery. Two-hybrid analysis has confirmed the in vivo interaction between Grx5 and Isa1. Sequence comparison techniques and cladistics indicate that the other two monothiol glutaredoxins of S. cerevisiae, Grx3 and Grx4, have evolved from the fusion of a thioredoxin gene with a monothiol glutaredoxin gene early in the eukaryotic lineage, leading to differential functional specialization. While bacteria do not contain these chimaeric glutaredoxins, in many eukaryotic species Grx5 and Grx3/4-type monothiol glutaredoxins coexist in the cell.  相似文献   

18.
Ferredoxins are iron-sulfur proteins that have been studied for decades because of their role in facilitating the monooxygenase reactions catalyzed by p450 enzymes. More recently, studies in bacteria and yeast have demonstrated important roles for ferredoxin and ferredoxin reductase in iron-sulfur cluster assembly. The human genome contains two homologous ferredoxins, ferredoxin 1 (FDX1) and ferredoxin 2 (FDX2--formerly known as ferredoxin 1L). More recently, the roles of these two human ferredoxins in iron-sulfur cluster assembly were assessed, and it was concluded that FDX1 was important solely for its interaction with p450 enzymes to synthesize mitochondrial steroid precursors, whereas FDX2 was used for synthesis of iron-sulfur clusters, but not steroidogenesis. To further assess the role of the FDX-FDXR system in mammalian iron-sulfur cluster biogenesis, we performed siRNA studies on FDX1 and FDX2, on several human cell lines, using oligonucleotides identical to those previously used, along with new oligonucleotides that specifically targeted each gene. We concluded that both FDX1 and FDX2 were important in iron-sulfur cluster biogenesis. Loss of FDX1 activity disrupted activity of iron-sulfur cluster enzymes and cellular iron homeostasis, causing mitochondrial iron overload and cytosolic iron depletion. Moreover, knockdown of the sole human ferredoxin reductase, FDXR, diminished iron-sulfur cluster assembly and caused mitochondrial iron overload in conjunction with cytosolic depletion. Our studies suggest that interference with any of the three related genes, FDX1, FDX2 or FDXR, disrupts iron-sulfur cluster assembly and maintenance of normal cytosolic and mitochondrial iron homeostasis.  相似文献   

19.
Saccharomyces cerevisiae Grx3 and Grx4 are multidomain monothiol glutaredoxins that are redundant with each other. They can be efficiently complemented by heterologous expression of their mammalian ortholog, PICOT, which has been linked to tumor development and embryogenesis. PICOT is now believed to act as a chaperone distributing Fe-S clusters, although the first link to iron metabolism was observed with its yeast counterparts. Like PICOT, yeast Grx3 and Grx4 reside in the cytosol and nucleus where they form unusual Fe-S clusters coordinated by two glutaredoxins with CGFS motifs and two molecules of glutathione. Depletion or deletion of Grx3/Grx4 leads to functional impairment of virtually all cellular iron-dependent processes and loss of cell viability, thus making these genes the most upstream components of the iron utilization system. Nevertheless, the Δgrx3/4 double mutant in the BY4741 genetic background is viable and exhibits slow but stable growth under hypoxic conditions. Upon exposure to air, growth of the double deletion strain ceases, and suppressor mutants appear. Adopting a high copy-number library screen approach, we discovered novel genetic interactions: overexpression of ESL1, ESL2, SOK1, SFP1 or BDF2 partially rescues growth and iron utilization defects of Δgrx3/4. This genetic escape from the requirement for Grx3/Grx4 has not been previously described. Our study shows that even a far-upstream component of the iron regulatory machinery (Grx3/4) can be bypassed, and cellular networks involving RIM101 pH sensing, cAMP signaling, mTOR nutritional signaling, or bromodomain acetylation, may confer the bypassing activities.  相似文献   

20.
The fission yeast Schizosaccharomyces pombe contains two CGFS-type monothiol glutaredoxins, Grx4 and Grx5, which are localized primarily in the nucleus and mitochondria, respectively. We observed involvement of Grx4 in regulating iron-responsive gene expression, which is modulated by a repressor Fep1. Lack of Grx4 caused defects not only in growth but also in the expression of both iron-uptake and iron-utilizing genes regardless of iron availability. In order to unravel how Grx4 is involved in Fep1-mediated regulation, interaction between them was investigated. Co-immunoprecipitation and bimolecular fluorescence complementation (BiFC) revealed that Grx4 physically interacts with Fep1 in vivo. BiFC revealed localized nuclear dots produced by interaction of Grx4 with Fep1. Mutation of cysteine-172 in the CGFS motif to serine (C172S) produced effects similarly observed under Grx4 depletion, such as the loss of iron-dependent gene regulation and the absence of nuclear dots in BiFC analysis. These results suggest that the ability of Grx4 to bind iron, most likely Fe-S cofactor, could be critical in interacting with and modulating the activity of Fep1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号