首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
The purpose of this study was to investigate the relationships between the athletic skills measured at the National Football League (NFL) combine. The combine comprises the following tests: 36.6-m sprint with split times at 9.1 and 18.3 m, vertical and horizontal jumps, 18.3-m shuttle run, 3-cone drill, and 102.1-kg bench press. Draftees to the NFL who participated in the annual combine from 2005 to 2009 were included in the study (n = 1,136). Pearson's (r) correlations were calculated to determine the relationships between the tests, and coefficients of determination (r) were used to determine common variance. The 9.1-, 18.3-, and 36.6-m sprint times are nearly perfectly correlated (r ranges from 0.900 to 0.967) as are the change-of-direction ability tests, 18.3-m shuttle run, and 3-cone drill (r = 0.948), suggesting similar skills are being measured. Performance in both jumping tasks is more strongly associated with longer sprint distances, suggesting mechanisms such as the stretch-shortening cycle may be more important at maximal, or near-maximal, speeds. The correlations between change-of-direction ability and sprinting and jumping are generally much weaker (r ranges from 0.250 to -0.653), suggesting less association and independent motor skills. Although not particularly large correlation coefficients, bench press performance is positively correlated with outcomes in all running drills and inversely correlated with jump abilities, suggesting that in the observed cohort, upper body strength may be of little benefit to these tasks. Incorporation of a nonacceleration influenced (i.e., moving start) measure of maximal speed may be preferred if the intention of a test battery is to measure independent motor skills. Further, when constructing test batteries, either the 18.3-m shuttle or 3-cone drill is likely sufficient as a measure of change-of-direction ability. Test batteries should be constructed to measure independent motor skills.  相似文献   

2.
To investigate the positional physical requirements necessary to be drafted into the National Football League (NFL), data from the annual NFL combine over the years 2005-2009 were examined. Only those players invited to the combine and subsequently drafted in the same year (n = 1,136) were included in the study. Data from 8 combine physical performance tests were examined for 15 positions. Combine measures evaluated for the center, cornerback, defensive end, defensive tackle, free safety, fullback, inside linebacker, offensive guard, offensive tackle, outside linebacker, quarterback, running back, strong safety, tight end, and wide receiver positions were the 9.1-, 18.3-, and 36.6-m sprints, the vertical and broad jumps, the 18.3-m shuttle run, the 3-cone drill, and the 102.1-kg bench press for maximum repetitions and, from this, a predicted measure of 1 repetition maximum. A 1-way analysis of variance detected differences in all 9 performance measures (p < 0.01). Post hoc independent t-tests indicated that over most tests many positions exhibited outcomes significantly different from most other positions. Generally, lineman positions performed inferiorly in sprint, jump and change-of-direction ability measures and superiorly in the upper body strength measures. Conversely, defensive back positions were the worst performers in the upper body strength test, and wide receivers and defensive backs were the best performers in all other measures. In general, offensive and defensive positions that commonly compete directly against one another display similar physical characteristics. Any advantages (statistically significant and not) between positions in direct competition were consistently in favor of defensive positions. The results of the present research present position-specific profiles for each of 15 positions. Coaches and practitioners will be able to use the findings of this research to better prepare athletes for entry into the NFL.  相似文献   

3.
The purpose of this study was to investigate positional relationships between sprint and jump abilities and body mass in elite college American football players (n = 1,136). Data from the annual National Football League combine over the years 2005-2009 were examined. The measures included for examination were the 9.1-, 18.3-, 36.6-, and flying 18.3-m sprints and the vertical and horizontal jumps. Pearson's correlation coefficients (r) were calculated to determine the relationships between the tests, and coefficients of determination (r2) were used to determine common variance. With the exception of the relationship between the 9.1-m and the flying 18.3-m sprints, the relationships between all sprints are very strong. Vertical jump ability is more strongly associated with maximum speed, as compared with acceleration. Horizontal jump ability is similarly associated with maximum speed and acceleration. The 9.1-, 18.3-, and flying 18.3-m sprints and the jump tests would appear to measure independent skills. Stationary start sprints up to 36.6 m appear to be heavily influenced by acceleration and may thus measure similar characteristics. The flying 18.3-m sprint is recommended as a measure of maximum speed. Body mass was most strongly associated with performance in the lineman group. When body mass was controlled for, correlations weakened across all the groups. The role of body mass remains unclear. Regardless of sport, the present research supports the notion that the relationships between various sprint and jump abilities warrant positional consideration. Coaches and practitioners will be able to use the findings of this research to better test and monitor athletes requiring different skills.  相似文献   

4.
Strength and conditioning professionals who work with collegiate football players focus much of their time and effort on developing programs to enhance athletic performance. Although there has been much speculation, there is little scientific evidence to suggest which combination of physical characteristics best predicts athletic performance in this population. The purpose of this investigation was to examine the relationship among 6 physical characteristics and 3 functional measures in college football players. Data were gathered on 46 NCAA Division I college football players. The 3 response variables were 36.6-m sprint, 18.3-m shuttle run, and vertical jump. The 6 regressor variables were height, weight, percentage of body fat, hamstring length, bench press, and hang clean. A stepwise multiple regression analysis was performed to screen for variables that predict physical performance. Regression analysis revealed clear prediction models for the 36.6-m sprint and 18.3-m shuttle run. The results of this investigation will help strength and conditioning specialists better understand the variables that predict athletic performance in Division I college football players.  相似文献   

5.
Volleyball players need to sprint and change direction during a match. Lower-body power, often measured by jump tests, could contribute to faster movements. How different jumps relate to linear and change-of-direction (COD) speed has not been analyzed in Division I (DI) collegiate women’s volleyball players. Fifteen female volleyball players completed the vertical jump (VJ), two-step approach jump (AppJ), and standing broad jump (SBJ). Peak power and power-to-body mass ratio (P:BM) were derived from VJ and AppJ height; relative SBJ was derived from SBJ distance. Linear speed was measured via a 20-m sprint (0–10 and 0–20 m intervals); COD speed was measured using the pro-agility shuttle. Pearson’s correlations (p < 0.05) calculated relationships between the power variables, and speed tests. There were no significant relationships between the power variables and the 0–10 m sprint interval. Greater VJ height (r = -0.534) and P:BM (r = -0.557) related to a faster 0–20 m sprint interval. This be due to a greater emphasis on the stretch-shortening cycle to generate speed over 20 m. However, although a 20-m sprint may provide a measure of general athleticism, the distance may not be specific to volleyball. This was also indicated as the AppJ did not relate to any of the speed tests. Nonetheless, VJ height and P:BM, and SBJ distance and relative SBJ, all negatively correlated with the proagility shuttle (r = -0.548 to -0.729). DI women’s collegiate volleyball players could develop absolute and relative power in the vertical and horizontal planes to enhance COD speed.  相似文献   

6.
The purpose of this study was to examine performance differences between drafted and nondrafted athletes (N = 321) during the 2004 and 2005 National Football League (NFL) Combines. We categorized players into one of 3 groups: Skill, Big skill, and Linemen. Skill players (SP) consisted of wide receivers, cornerbacks, free safeties, strong safeties, and running backs. Big skill players (BSP) included fullbacks, linebackers, tight ends, and defensive ends. Linemen (LM) consisted of centers, offensive guards, offensive tackles, and defensive tackles. We analyzed player height and mass, as well as performance on the following combine drills: 40-yard dash, 225-lb bench press test, vertical jump, broad jump, pro-agility shuttle, and the 3-cone drill. Student t-tests compared performance on each of these measures between drafted and nondrafted players. Statistical significance was found between drafted and nondrafted SP for the 40-yard dash (P < 0.001), vertical jump (P = 0.003), pro-agility shuttle (P < 0.001), and 3-cone drill (P < 0.001). Drafted and nondrafted BSP performed differently on the 40-yard dash (P = 0.002) and 3-cone drill (P = 0.005). Finally, drafted LM performed significantly better than nondrafted LM on the 40-yard dash (P = 0.016), 225-lb bench press (P = 0.003), and 3-cone drill (P = 0.005). Certified strength and conditioning specialists will be able to utilize the significant findings to help better prepare athletes as they ready themselves for the NFL Combine.  相似文献   

7.
The purpose of this study was to examine the relationship between vertical jump measures and sprint speed over 10, 20, and 40 m in professional basketball players. Thirty-three professional basketball players aged (±SD) (27.4 ± 3.3 years), body mass (89.8 ± 11.1 kg), and stature (192 ± 8.2 cm) volunteered to participate in this study. All participants were tested on squat jump, countermovement jump, and 40-m running speed. The results show that all jump measures in absolute terms were correlated significantly to running performance over 10-, 20-, and 40-m sprint times. None of the jumping performance peak powers and reactive strength were found to have a correlation to running speed times in absolute term. Furthermore, all jump height measures relative to body mass except reactive strength had a marked and significant relationship with all sprint performance times. The results of this study indicate that while there is a strong and marked relationship between 10-, 20-, and 40-m sprint, there is also a considerable variation within the factors that contribute to performance over these distances. This may indicate that, separate training strategies could be implemented to improve running speed over these distances.  相似文献   

8.
The objective of this study was to determine the relationship between specific performance measures and hockey skating speed. Thirty competitive secondary school and junior hockey players were timed for skating speed. Off-ice measures included a 40-yd (36.9-m) sprint, concentric squat jump, drop jump, 1 repetition maximum leg press, flexibility, and balance ratio (wobble board test). Pearson product moment correlations were used to quantify the relationships between the variables. Electromyographic (EMG) activity of the dominant vastus lateralis and biceps femoris was monitored in 12 of the players while skating, stopping, turning, and performing a change-of-direction drill. Significant correlations (p < 0.005) were found between skating performance and the sprint and balance tests. Further analysis demonstrated significant correlations between balance and players under the age of 19 years (r = -0.65) but not those over 19 years old (r = -0.28). The significant correlations with balance suggested that stability may be associated with skating speed in younger players. The low correlations with drop jumps suggested that short contact time stretch-shortening activities (i.e., low amplitude plyometrics) may not be an important factor. Electromyographic activities illustrated the very high activation levels associated with maximum skating speed.  相似文献   

9.
The aim of this study was to compare the effect of short-sprint repetition and long-sprint repetition training (SST, LST), matched for total distance, on selected fitness components in young soccer players. Thirty young (14-15 years) soccer players were randomly assigned to either the short-sprint training group or long-sprint training group and completed 2 similar sets of fitness tests before and after 7 weeks of training. The 2 training programs consisted of SST (4-6 sets of 4 × 50-m all-out sprint) and LST (4-6 sets of 200-m run at 85% of maximum speed), each performed 3 times a week. Before training, there were no baseline between-group differences in predicted VO2max, standing long jump, 30-m sprint time, 4 × 10-m shuttle running time, and 250-m running time. Both training programs led to a significant improvement in VO2max (predicted from the 20-m shuttle run, p < 0.01), with no between-group difference (p = 0.14). Both training programs also led to a significant improvement in the anaerobic fitness variables of 30-m sprint time (p < 0.01), 4 × 10-m shuttle running time (p < 0.01), and 250-m running time (p < 0.01), with no between-group differences. Neither of the training programs had a significant effect on standing long jump (p = 0.21). The study showed that long, near-maximal sprints, and short, all-out sprint training, matched for total distance, are equally effective in enhancing both the aerobic and anaerobic fitness of young soccer players. Therefore, to maintain a player's training interest and enthusiasm, coaches may alternate between these methods during the busy soccer season.  相似文献   

10.
The purpose of this study was to examine the physiological effects of different sprint repetition protocols on professional footballers. Of particular interest were the abilities of repeated sprint protocols to induce fatigue to an extent observed during competitive soccer. Six professional soccer players were assessed for fatigue rate and physiological responses of heart rate (HR), blood lactate (BLa), and rating of perceived exertion (RPE) during the performance of 4 repeated sprint drills, each totaling a sprint distance of 600 m. The 4 drills used 15- or 40-m sprints with 1:4 or 1:6 exercise: rest ratios. The 15-m sprint drill with 1:4 exercise:rest ratio induced the greatest fatigue (final sprint time 15% greater than initial sprint time) and greatest physiological responses. The 40-m sprint drill using a 1:4 exercise:rest ratio produced similar BLa and HR responses to the 15-m drill (13-14 mmol.L(-1) and 89% HRmax, respectively) but significantly lower RPE (mean +/- SD: 17.1 +/- 0.4 vs. 18.8 +/- 0.4, p < 0.05) and fatigue rates (11.1 vs. 15.0%, p < 0.01). Both sprint distance and exercise:rest ratio independently influenced fatigue rate, with the 15-m sprint distance and the 1:4 exercise:rest ratio inducing significantly (p < 0.01) greater fatigue than the 40-m sprint distance and the 1:6 exercise:rest ratio. The magnitude of fatigue during the 40- x 15-m sprint drill using a 1:6 exercise:rest ratio was 7.5%, which is close to the fatigue rate previously reported during actual soccer play. The present study is the first to examine both variations in sprint distances and rest ratios simultaneously, and the findings may aid the design of repeated sprint training for soccer.  相似文献   

11.
The purpose of this study was to determine the relationship between measures of unilateral and bilateral jumping performance and 10- and 25-m sprint performance. Fifteen division I women soccer players (height 165 ± 2.44 cm, mass 61.65 ± 7.7 kg, age 20.19 ± 0.91 years) volunteered to participate in this study. The subjects completed a 10- and 25-m sprint test. The following jump kinematic variables were measured using accelerometry: sprint time, step length, step frequency, jump height and distance, contact time, concentric contact time, and flight time (Inform Sport Training Systems, Victoria, BC, Canada). The following jumps were completed in random order: bilateral countermovement vertical jump, bilateral countermovement horizontal jump, bilateral 40-cm drop vertical jump, bilateral 40-cm drop horizontal jump, unilateral countermovement vertical jump (UCV), unilateral countermovement horizontal jump, unilateral 20-cm drop vertical jump (UDV), and unilateral 20-cm drop horizontal jump (UDH). The trial with the best jump height or distance, reactive strength (jump height or distance/total contact time), and flight time to concentric contact time ratio (FT/CCT) was recorded to analyze the relationship between jump kinematics and sprint performance. None of the bilateral jump kinematics significantly correlated with 10- and 25-m sprint time, step length, or step frequency. Right-leg jump height (r = -0.71, p = 0.006, SEE = 0.152 seconds), FT/CCT (r = -0.58, p = 0.04, SEE = 0.176 seconds), and combined right and left-leg jump height (r = -0.61) were significantly correlated with the 25-m sprint time during the UCV. Right-leg FT/CCT was also significantly related to 25-m step length (r = 0.68, p = 0.03, SEE = 0.06 m) during the UDV. The combined right and left leg jump distance to standing height ratio during the UDH significantly correlated (r = -0.58) with 10-m sprint time. In comparison to bilateral jumps, unilateral jumps produced a stronger relationship with sprint performance.  相似文献   

12.
In order to identify biomotor structures in elite female handball players, factor structures of morphological characteristics and basic motor abilities, and of variables evaluating situation motor abilities of elite female handball players (n = 53) were determined first, followed by determination of differences and relations of the morphological, motor and specific motor space according to handball performance. Factor analysis of 16 morphological measures produced three morphological factors, i.e. factor of absolute voluminosity, i.e. mesoendomorphy, factor of longitudinal skeleton dimensionality, and factor of transverse hand dimensionality. Factor analysis of 15 motor variables yielded five basic motor dimensions, i.e. factor of agility, factor of throwing explosive strength, factor of running explosive strength (sprint), factor of jumping explosive strength and factor of movement frequency rate. Factor analysis of 5 situation motor variables produced two dimensions: factor of specific agility with explosiveness and factor of specific precision with ball manipulation. Analysis of variance yielded greatest differences relative to handball performance in the factor of specific agility and throwing strength, and the factor of basic motoricity that integrates the ability of coordination (agility) with upper extremity throwing explosiveness and lower extremity sprint (30-m sprint) and jumping (standing triple jump). Considering morphological factors, the factor of voluminosity, i.e. mesoendomorphy, which is defined by muscle mass rather than adipose tissue, was found to contribute significantly to the players'performance. Results of regression analysis indicated the handball performance to be predominantly determined by the general specific motor factor based on specific agility and explosiveness, and by the morphological factor based on body mass and volume, i.e. muscle mass. Concerning basic motor abilities, the factor of movement frequency rate, which is associated with the ability of ball manipulation, was observed to predict significantly the handball players' performance.  相似文献   

13.
Repeated sprint testing is gaining popularity in team sports, but the methods of data analysis and relationships to speed and endurance qualities are not well described. We compared three different methods for analyzing repeated sprint test results, and we quantified relationships between repeated sprints, short sprints, and endurance test scores. Well-trained male junior Australian Football players (n = 60, age 18.1 +/- 0.4 years, height 1.88 +/- 0.07 m, mass 82.0 +/- 8.1 kg; mean +/- SD) completed a 6 x 30-m repeated sprint running test on a 20-second cycle, a 20-m sprint test (short sprint), and the 20-m multistage shuttle run for endurance. Repeated sprint results were evaluated in three ways: total time for all six sprints (TOTAL), percent change from predicted times (PRED) from the fastest 30-m sprint time, and percent change from first to last sprint (CHANGE). We observed a very large decrement (CHANGE 6.3 +/- 0.7%, mean +/- 90% confidence limits) in 30-m performance from the first to last sprint (4.16 +/- 0.10 to 4.42 +/- 0.11 seconds, mean +/- SD). Results from TOTAL were highly correlated with 20-m sprint and 20-m multistage shuttle run tests. Performance decrements calculated by PRED were highly correlated with TOTAL (r = 0.91), but neither method was directly comparable with CHANGE (r = -0.23 and r = 0.12 respectively). TOTAL was moderately correlated with fastest 20-m sprint time (r = 0.66) but not the 20-m multistage shuttle run (r = -0.20). Evaluation of repeated sprint testing is sensitive to the method of data analysis employed. The total sprint time and indices of the relative decrement in performance are not directly interchangeable. Repeated sprint ability seems more related to short sprint qualities than endurance fitness.  相似文献   

14.
Relationship between functional movement screen and athletic performance   总被引:1,自引:0,他引:1  
Parchmann, CJ and McBride, JM. Relationship between functional movement screen and athletic performance. J Strength Cond Res 25(12): 3378-3384, 2011-Tests such as the functional movement screen (FMS) and maximal strength (repetition maximum strength [1RM]) have been theorized to assist in predicting athletic performance capabilities. Some data exist concerning 1RM and athletic performance, but very limited data exist concerning the potential ability of FMS to assess athletic performance. The purpose of this investigation was to determine if FMS scores or 1RM is related to athletic performance, specifically in Division I golfers in terms of sprint times, vertical jump (VJ) height, agility T-test times, and club head velocity. Twenty-five National Collegiate Athletic Association Division I golfers (15 men, age = 20.0 ± 1.2 years, height = 176.8 ± 5.6 cm, body mass = 76.5 ± 13.4 kg, squat 1RM = 97.1 ± 21.0 kg) (10 women, age = 20.5 ± 0.8 years, height = 167.0 ± 5.6 cm, body mass = 70.7 ± 21.5 kg, squat 1RM = 50.3 ± 16.6) performed an FMS, 1RM testing, and field tests common in assessing athletic performance. Athletic performance tests included 10- and 20-m sprint time, VJ height, agility T-test time, and club head velocity. Strength testing included a 1RM back squat. Data for 1RM testing were normalized to body mass for comparisons. Correlations were determined between FMS, 1RMs, and athletic performance tests using Pearson product correlation coefficients (p ≤ 0.05). No significant correlations existed between FMS and 10-m sprint time (r = -0.136), 20-m sprint time (r = -0.107), VJ height (r = 0.249), agility T-test time (r = -0.146), and club head velocity (r = -0.064). The 1RM in the squat was significantly correlated to 10-m sprint time (r = -0.812), 20-m sprint time (r = -0.872), VJ height (r = 0.869), agility T-test time (r = -0.758), and club head velocity (r = 0.805). The lack of relationship suggests that FMS is not an adequate field test and does not relate to any aspect of athletic performance. Based on the data from this investigation, 1RM squat strength appears to be a good indicator of athletic performance.  相似文献   

15.
The purpose of this study was to evaluate the effects of sprint training on muscle function and dynamic athletic performance and to compare them with the training effects induced by standard plyometric training. Male physical education students were assigned randomly to 1 of 3 groups: sprint group (SG; n = 30), plyometric group (PG; n = 30), or control group (CG; n = 33). Maximal isometric squat strength, squat- and countermovement jump (SJ and CMJ) height and power, drop jump performance from 30-cm height, and 3 athletic performance tests (standing long jump, 20-m sprint, and 20-yard shuttle run) were measured prior to and after 10 weeks of training. Both experimental groups trained 3 days a week; SG performed maximal sprints over distances of 10-50 m, whereas PG performed bounce-type hurdle jumps and drop jumps. Participants in the CG group maintained their daily physical activities for the duration of the study. Both SG and PG significantly improved drop jump performance (15.6 and 14.2%), SJ and CMJ height ( approximately 10 and 6%), and standing long jump distance (3.2 and 2.8%), whereas the respective effect sizes (ES) were moderate to high and ranged between 0.4 and 1.1. In addition, SG also improved isometric squat strength (10%; ES = 0.4) and SJ and CMJ power (4%; ES = 0.4, and 7%; ES = 0.4), as well as sprint (3.1%; ES = 0.9) and agility (4.3%; ES = 1.1) performance. We conclude that short-term sprint training produces similar or even greater training effects in muscle function and athletic performance than does conventional plyometric training. This study provides support for the use of sprint training as an applicable training method of improving explosive performance of athletes in general.  相似文献   

16.
We evaluated the association between 2 genetic polymorphisms known to be involved in fitness and performance, and anthropometric features, body composition, and athletic performances in young male soccer players with the goal of identifying genetic profiles that can be used to achieve maximal results from training. One hundred twenty-five medium-high-level male soccer players were genotyped for angiotensin-converting enzyme (ACE) I/D, and vitamin D receptor (VDR) FokI gene polymorphisms and scored for anthropometric measurements, body composition, and athletic performance. Body mass index, fat mass, fat-free mass, resistance, reactance, impedance, phase angle (PA), and body cell mass were measured. Athletic performance was evaluated by squat jump, countermovement jump (CMJ), 2-kg medicine ball throw, 10- and 20-m sprint time. We observed that the homozygous ff genotype of the VDR gene was significantly more represented in young soccer players than in a matched sedentary population. Values of reactance and PA were differently distributed in ACE and VDR genotypes with high mean values in subjects with DD (ACE) and FF (VDR) genotypes. No correlation was observed between ACE or VDR genotypes and 2-kg medicine ball throw, 10- and 20-m sprint times. The ID genotype of ACE was associated with the best performances in squat jump and CMJ. Our results suggest that determination of ACE and VDR genotypes might help select those young athletes harboring the most favorable genetic potential to succeed in soccer.  相似文献   

17.
The aim of this research was to examine the influences of specially programmed physical education lessons on biomotor development in boys, as well as the influence of those changes on relations between the set of morphological and motor variables and athletic variables for the assessment of sprint and throw abilities. For this purpose, an overall sample of 325 primary school first grade pupils from the city of Split area, aged 6-8 years, was divided into control group of subjects (N=140) attending regular physical education lessons and experimental group attending specially programmed lessons based on athletics, sports gymnastics and games elements as well as on general preparatory exercises. The relations between the predictor set of variables composed of 4 morphological measurements and 6 motor tests with the criteria of sprint and ball throwing were established by the regression correlation analysis at the beginning and at the end of the academic year Both groups of subjects achieved positive quantitative resultant shift between the two points of measurements, whereas this shift was more significant in the experimental group in relation to the control group, especially in motor abilities coordination of flexibility, movement frequency and of explosive, repetitive and static strength. The number of significant predictors for criteria variables of sprint and ball throwing increased in the final measurement in relation to the first one in both groups of subjects. While in the control group the best results predictor in sprint were the motor abilities of explosive strength and trunk strength, the best results predictor in sprint in the experimental group were coordination, trunk strength, flexibility and explosive strength. As far as the morphological characteristics are concerned muscle mass has a positive and body mass a negative effect on the sprint result. The best results predictor in ball throwing are explosive strength and trunk strength which, in the experimental group of pupils are additionally followed by coordination development as well as the overall body mass development. By comparison of these and the earlier obtained results, a new work model for the disciplines of sprint and throws within the athletic sport school, has been proposed.  相似文献   

18.
Success in rugby league football seems heavily reliant on players possessing an adequate degree of various physical fitness qualities, such as strength, power, speed, agility, and endurance, as well as the individual skills and team tactical abilities. The purpose of this study was to describe and compare the lower body strength, power, acceleration, maximal speed, agility, and sprint momentum of elite first-division national rugby league (NRL) players (n = 20) to second-division state league (SRL) players (n = 20) players from the same club. Strength and maximal power were the best discriminators of which players were in the NRL or SRL squads. None of the sprinting tests, such as acceleration (10-m sprint), maximal speed (40-m sprint), or a unique 40-m agility test, could distinguish between the NRL or SRL squads. However, sprint momentum, which was a product of 10-m velocity and body mass, was better for discriminating between NRL and SRL players as heavier, faster players would possess better drive forward and conversely be better able to repel their opponents' drive forward. Strength and conditioning specialists should therefore pay particular attention to increasing lower body strength and power and total body mass through appropriate resistance training while maintaining or improving 10-m sprint speed to provide their players with the underlying performance characteristics of play at the elite level in rugby leagues.  相似文献   

19.
ABSTRACT: Klusemann, MJ, Pyne, DB, Fay, T, and Drinkwater, EJ. Online Video-Based Resistance Training Improves the Physical Capacity of Junior Basketball Athletes. J Strength Cond Res 26(10): 2677-2684, 2012-Junior basketball athletes require a well-designed resistance training program to improve their physical development. Lack of expert supervision and resistance training in junior development pathways may be overcome by implementing an online video-based program. The aim of this study was to compare the magnitude of improvement (change) in physical performance and strength and functional movement patterns of junior basketball athletes using either a fully supervised or an online video-based resistance training program. Thirty-eight junior basketball athletes (males, n = 17; age, 14 ± 1 year; height, 1.79 ± 0.10 m; mass, 67 ± 12 kg; females, n = 21; age, 15 ± 1 year; height, 1.70 ± 0.07 m; mass, 62 ± 8 kg) were randomly assigned into a supervised resistance training group (SG, n = 13), video training group (VG, n = 13) or control group (CG, n = 12) and participated in a 6-week controlled experimental trial. Pre- and posttesting included measures of physical performance (20-m sprint, step-in vertical jump, agility, sit and reach, line drill, and Yo-Yo intermittent recovery level 1), strength (15 s push-up and pull-up), and functional movement screening (FMS). Both SG and VG achieved 3-5% ± 2-4% (mean ± 90% confidence limits) greater improvements in several physical performance measures (vertical jump height, 20-m sprint time, and Yo-Yo endurance performance) and a 28 ± 21% greater improvement in push-up strength compared with the CG. The SG attained substantially larger gains in FMS scores over both the VG (12 ± 10%) and CG (13 ± 8%). Video-based training appears to be a viable option to improve physical performance and strength in junior basketball athletes. Qualified supervision is recommended to improve functional movement patterns in junior athletes.  相似文献   

20.
The effects of six-month athletic training on improving motor abilities in 7-year-old schoolgirls were assessed. Analysis of the results of 12 motor tests showed significant improvement in the study group (n = 38) in comparison with control group (n = 140) subjected to conventional physical education classes only. The improvement referred to the variables of aerobic endurance (3-min run), flexibility (forward bow), explosive strength (ball throwing and 20-m run), keeping balance (bench standing), static strength (bent arm hang), and repetitive strength (sit-ups). These are probably adaptive changes brought up by discriminant functions. The varimax factor and discriminative function correlations indicated that all four factors of changes contributed significantly to the explanation of discriminative function. An almost equally high correlation of varimax factors and discriminative function was obtained on the basis of differences in the third factor responsible for changes in the frequency of movements and in the explosive strength of the jump type; in the second factor responsible for changes in coordination with changes in the repetitive strength of the body; and in the fourth factor responsible for changes in the explosive strength of the throw and sprint types with changes and endurance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号