首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
禽流感与禽流感病毒研究进展   总被引:6,自引:1,他引:6  
对禽流感的症状、传播、感染、流行规律、疾病发生历史、流行监测、诊断、防治以及禽流感病毒的分类地位、命名、病毒粒子形态结构、病毒基因组结构、病毒复制、病毒变异的研究进展作了综合评述,并对该领域的研究热点和方向作了探讨。  相似文献   

2.
禽流感病毒分型基因芯片的研制   总被引:11,自引:0,他引:11  
[目的]禽流感病毒是一种全球重要的人和动物呼吸道病病原,快速确定其不同亚型对于全球流感监测具有重要的意义.本研究意在研制一种可同时鉴定禽流感病毒所有亚型的方法.[方法]根据GenBank上已发表的禽流感病毒不同亚型(16个HA亚型和9个NA亚型)的基因序列,设计合成了25对特异性引物和1对通用引物,然后以各亚型病毒的参考株RNA作为模板,建立扩增不同亚型的多重RT-PCR方法.参考各亚型病毒靶cDNAs区域的保守序列设计了52条亚型特异的探针,进而利用扩增的各亚型病毒的靶cDNAs对其特异性进行评价.在此基础上,将设计好的探针点制到处理好的玻片上,制备了禽流感病毒分型鉴定基因芯片,结合所建立的扩增不同亚型的多重RT-PCR方法,开发了禽流感病毒亚型鉴定基因芯片试剂.利用收集自49个地区的2653份标本对其特异性和敏感性进行了初步评价.[结果]用于评价的各亚型参考毒株均出现良好的特异性杂交信号,检测的敏感度可达2.47 PFU/mL或2.5 ng靶DNA片段,而且与禽类常见的IBV、NDV等6种病毒均无交叉反应.[结论]证明该病毒分型基因芯片具有良好的特异性、敏感性.  相似文献   

3.
The human disease caused by avian influenza virus in South Asia is a typical example of emerging infection resulting from transmission of a known causative agent to a new host. The first cases with a comparatively high level of lethality rates among patients were registered in 1997 and 1999. The situation is a special phenomenon in epidemiology which requires deep evolutionary and ecological analysis, as well as theoretical interpretation. With the example of avian influenza virus in Western Europe and South Asia in 2003-2004 the practical expediency of modern concepts "foci versus epidemics" and "eradication versus vaccination" is now evident.  相似文献   

4.
5.
Enzymological characteristics of avian influenza A virus neuraminidase   总被引:1,自引:0,他引:1  
Neuraminidases of 18 strains of avian influenza A virus were examined by both colorimetric and fluorometric assays using fetuin and 4-methylumbelliferyl-N-Ac-alpha-D-neuraminide as substrates, respectively, to compare them with those of human influenza A and B viruses. The ratios of the neuraminidase activity of avian influenza virus measured by the colorimetric assay method to that measured by the fluorometric assay were distributed in the range of 2.4-20.3. The enzyme of avian influenza virus showed calcium-ion dependence in both assay methods. These results suggest that neuraminidase of avian influenza A virus is varies greatly from one strain to another in substrate specificity as compared with those of human influenza A and B viruses, and that some strains of avian influenza A virus have a neuraminidase with unique enzymological characteristics different from that of human influenza A virus as well as that of influenza B virus.  相似文献   

6.
目的构建以重组乳酸乳球菌为基础的黏膜输送载体。方法以高致病性禽流感病毒H5N1的HA1基因作为研究对象,利用nisin诱导表达控制系统,构建分泌型与非分泌型重组乳酸乳球菌表达载体,经口服灌胃途径免疫BALB/c小鼠,通过ELISA检测小鼠血清IgG和粪便IgA,最后,对免疫后的小鼠进行H5N1病毒攻击实验,进而比较分泌型与非分泌型重组乳酸乳球菌表达载体的免疫效率。结果分泌型重组乳酸乳球菌免疫小鼠后产生的抗体水平(IgG和IgA)高于非分泌型重组乳酸乳球菌,经过同型H5N1病毒攻击后,分泌型重组乳酸乳球菌免疫的小鼠的存活率为80%,而非分泌型重组乳酸乳球菌免疫的小鼠的存活率为60%。结论本研究为防治高致病性禽流感病毒提供可行的思路与方法。  相似文献   

7.
Afonso CL 《BioTechniques》2007,43(2):188, 190, 192
Increasing surveillance for the avian influenza virus (AIV) has underscored the need for quickly and precisely characterizing isolates of this highly variable target. Random amplification, sequencing, and assembly of total RNA from nonpurified virus overcomes the need for specific primers for DNA microarray or PCR protocols.  相似文献   

8.
Infection of poultry with highly pathogenic avian influenza virus (AIV) can be devastating in terms of flock morbidity and mortality, economic loss, and social disruption. The causative agent is confined to certain isolates of influenza A virus subtypes H5 and H7. Due to the potential of direct transfer of avian influenza to humans, continued research into rapid diagnostic tests for influenza is therefore necessary. A nucleic acid sequence-based amplification (NASBA) method was developed to detect a portion of the haemagglutinin gene of avian influenza A virus subtypes H5 and H7 irrespective of lineage. A further NASBA assay, based on the matrix gene, was able to detect examples of all known subtypes (H1-H15) of avian influenza virus. The entire nucleic acid isolation, amplification, and detection procedure was completed within 6h. The dynamic range of the three AIV assays was five to seven orders of magnitude. The assays were sensitive and highly specific, with no cross-reactivity to phylogenetically or clinically relevant viruses. The results of the three AIV NASBA assays correlated with those obtained by viral culture in embryonated fowl's eggs.  相似文献   

9.
禽流感病毒血凝素疫苗在转基因马铃薯中的表达   总被引:20,自引:0,他引:20  
利用转基因马铃薯表达禽流感病毒血凝素疫苗,将含有禽流感病毒血凝素序列的表达载体导入农杆菌,再感染马铃薯的幼茎外植体。转化植株的再生及温室栽培,Western blot分析表明,83%的转化植株在其块茎组织中表达了重组血凝素,表达量占总蛋白量的0.03-0.04%,结果显示用马铃薯生产口服禽流感疫苗是可行的。  相似文献   

10.
Accumulating infections of highly pathogenic H5N1 avian influenza in humans underlines the need to track the ability of these viruses to spread among humans. A human-transmissible avian influenza virus is expected to cause clusters of infections in humans living in close contact. Therefore, epidemiological analysis of infection clusters in human households is of key importance. Infection clusters may arise from transmission events from (i) the animal reservoir, (ii) humans who were infected by animals (primary human-to-human transmission), or (iii) humans who were infected by humans (secondary human-to-human transmission). Here we propose a method of analysing household infection data to detect changes in the transmissibility of avian influenza viruses in humans at an early stage. The method is applied to an outbreak of H7N7 avian influenza virus in The Netherlands that was the cause of more than 30 human-to-human transmission events. The analyses indicate that secondary human-to-human transmission is plausible for the Dutch household infection data. Based on the estimates of the within-household transmission parameters, we evaluate the effectiveness of antiviral prophylaxis, and conclude that it is unlikely that all household infections can be prevented with current antiviral drugs. We discuss the applicability of our method for the detection of emerging human-to-human transmission of avian influenza viruses in particular, and for the analysis of within-household infection data in general.  相似文献   

11.
由H5N1流感病毒引起的高致病性禽流感,在禽类之间广泛传播。当人类接触这些禽类时,可能会被感染并产生严重的呼吸道症状,且死亡率高达60%。血凝素(hemagglutinin,HA)是H5N1病毒中和抗体的主要抗原,为了便于对病毒的HA突变进行研究,根据HA遗传基因的差异远近,所有的H5病毒株都被划分在20个分支内。对于H5N1病毒进化的研究在禽流感疫苗的研制、禽流感大流行的预防等方面均具有重要意义。现对禽流感、H5N1病毒特征、血凝素的结构功能、H5N1病毒的分支以及病毒进化的研究进行概述。  相似文献   

12.
Attachment of palmitic acid to cysteine residues is a common modification of viral glycoproteins. The influenza virus hemagglutinin (HA) has three conserved cysteine residues at its C terminus serving as acylation sites. To analyze the structural and functional roles of acylation, we have generated by reverse genetics a series of mutants (Ac1, Ac2, and Ac3) of fowl plague virus (FPV) containing HA in which the acylation sites at positions 551, 559, and 562, respectively, have been abolished. When virus growth in CV1 and MDCK cells was analyzed, similar amounts of virus particles were observed with the mutants and the wild type. Protein patterns and lipid compositions, characterized by high cholesterol and glycolipid contents, were also indistinguishable. However, compared to wild-type virus, Ac2 and Ac3 virions were 10 and almost 1,000 times less infectious, respectively. Fluorescence transfer experiments revealed that loss of acyl chains impeded formation of fusion pores, whereas hemifusion was not affected. When the affinity to detergent-insoluble glycolipid (DIG) domains was analyzed by Triton X-100 treatment of infected cells and virions, solubilization of Ac2 and Ac3 HAs was markedly facilitated. These observations show that acylation of the cytoplasmic tail, while not necessary for targeting to DIG domains, promotes the firm anchoring and retention of FPV HA in these domains. They also indicate that tight DIG association of FPV HA is essential for formation of fusion pores and thus probably for infectivity.  相似文献   

13.
Although increasing data have become available that link human adaptation with specific molecular changes in nonhuman influenza viruses, the molecular changes of these viruses during a large highly pathogenic avian influenza virus (HPAI) outbreak in poultry along with avian-to-human transmission have never been documented. By comprehensive virologic analysis of combined veterinary and human samples obtained during a large HPAI A (H7N7) outbreak in the Netherlands in 2003, we mapped the acquisition of human adaptation markers to identify the public health risk associated with an HPAI outbreak in poultry. Full-length hemagglutinin (HA), neuraminidase (NA), and PB2 sequencing of A (H7N7) viruses obtained from 45 human cases showed amino acid variations at different codons in HA (n=20), NA (n=23), and PB2 (n=23). Identification of the avian sources of human virus infections based on 232 farm sequences demonstrated that for each gene about 50% of the variation was already present in poultry. Polygenic accumulation and farm-to-farm spread of known virulence and human adaptation markers in A (H7N7) virus-infected poultry occurred prior to farm-to-human transmission. These include the independent emergence of HA A143T mutants, accumulation of four NA mutations, and farm-to-farm spread of virus variants harboring mammalian host determinants D701N and S714I in PB2. This implies that HPAI viruses with pandemic potential can emerge directly from poultry. Since the public health risk of an avian influenza virus outbreak in poultry can rapidly change, we recommend virologic monitoring for human adaptation markers among poultry as well as among humans during the course of an outbreak in poultry.  相似文献   

14.
An open reading frame representing cDNA from a hemagglutinin (HA) encoding gene of a low pathogenic avian influenza virus (AIV) subtype H10N7 was cloned in the pNMT1-TOPO vector under the control of thiamine response promoter. This construct was designated as pNMT1-HA. The pNMT1-HA construct was transformed into Schizosaccharomyces pombe for expression of HA antigen. The correct expression of recombinant HA protein was confirmed by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot. The level of expression of recombinant HA protein was approximately 0.2% of total soluble protein. Purified yeast-derived recombinant HA protein showed hemagglutination activity. The 2-D and 3-D scanning images of recombinant HA protein were observed with an atomic force microscope (AFM). The structural integrity of the HA protein under AFM and hemagglutination activity provided support that the recombinant HA protein may be suitable for development of AIV subunit vaccine for mass administration to poultry.  相似文献   

15.
Lam TT  Hon CC  Lemey P  Pybus OG  Shi M  Tun HM  Li J  Jiang J  Holmes EC  Leung FC 《Molecular ecology》2012,21(12):3062-3077
Understanding how pathogens invade and become established in novel host populations is central to the ecology and evolution of infectious disease. Influenza viruses provide unique opportunities to study these processes in nature because of their rapid evolution, extensive surveillance, large data sets and propensity to jump species boundaries. H5N1 highly pathogenic avian influenza virus (HPAIV) is a major animal pathogen and public health threat. The virus is of particular importance in Indonesia, causing severe outbreaks among poultry and sporadic human infections since 2003. However, little is known about how H5N1 HPAIV emerged and established in Indonesia. To address these questions, we analysed Indonesian H5N1 HPAIV gene sequences isolated during 2003-2007. We find that the virus originated from a single introduction into East Java between November 2002 and October 2003. This invasion was characterized by an initially rapid burst of viral genetic diversity followed by a steady rate of lineage replacement and the maintenance of genetic diversity. Several antigenic sites in the haemagglutinin gene were subject to positive selection during the early phase, suggesting that host-immune-driven selection played a role in host adaptation and expansion. Phylogeographic analyses show that after the initial invasion of H5N1, genetic variants moved both eastwards and westwards across Java, possibly involving long-distance transportation by humans. The phylodynamics we uncover share similarities with other recently studied viral invasions, thereby shedding light on the ecological and evolutionary processes that determine disease emergence in a new geographical region.  相似文献   

16.
Most of our understanding of the ecology and evolution of avian influenza A virus (AIV) in wild birds is derived from studies conducted in the northern hemisphere on waterfowl, with a substantial bias towards dabbling ducks. However, relevant environmental conditions and patterns of avian migration and reproduction are substantially different in the southern hemisphere. Through the sequencing and analysis of 333 unique AIV genomes collected from wild birds collected over 15 years we show that Australia is a global sink for AIV diversity and not integrally linked with the Eurasian gene pool. Rather, AIV are infrequently introduced to Australia, followed by decades of isolated circulation and eventual extinction. The number of co-circulating viral lineages varies per subtype. AIV haemagglutinin (HA) subtypes that are rarely identified at duck-centric study sites (H8-12) had more detected introductions and contemporary co-circulating lineages in Australia. Combined with a lack of duck migration beyond the Australian-Papuan region, these findings suggest introductions by long-distance migratory shorebirds. In addition, on the available data we found no evidence of directional or consistent patterns in virus movement across the Australian continent. This feature corresponds to patterns of bird movement, whereby waterfowl have nomadic and erratic rainfall-dependant distributions rather than consistent intra-continental migratory routes. Finally, we detected high levels of virus gene segment reassortment, with a high diversity of AIV genome constellations across years and locations. These data, in addition to those from other studies in Africa and South America, clearly show that patterns of AIV dynamics in the Southern Hemisphere are distinct from those in the temperate north.  相似文献   

17.
Highly pathogenic avian influenza H5N1 viruses are found chiefly in birds and have caused severe disease and death in infected humans. Development of influenza vaccines capable of inducing heterosubtypic immunity against a broad range of influenza viruses is the best option for the preparedness, since vaccination remains the principal method in controlling influenza viral infections. Here, a mOMV-adjuvanted recombinant H5N2 (rH5N2) whole virus antigen vaccine with A/Environment/Korea/W149/06(H5N1)-derived H5 HA and A/Chicken/Korea/ma116/04(H9N2)-derived N2 NA in the backbone of A/Puerto Rico/8/34(H1N1) was prepared and generated by reverse genetics. Groups of mice were vaccinated by a prime-boost regime with the rH5N2 vaccine (1.75 μg of HA with/without 10 μg mOMV or aluminum hydroxide adjuvant for comparison). At two weeks post-immunizations, vaccinated mice were challenged with lethal doses of 103.5 EID50/ml of H5N1 or H9N2 avian influenza viruses, and were monitored for 15 days. Both mOMV- and alum-adjuvant vaccine groups had high survival rates after H5N1 infection and low levels of body weight changes compared to control groups. Interestingly, the mOMV-adjuvanted group induced better cross-reactive antibody responses serologically and promoted cross-protectivity against H5N1 and H9N2 virus challenges. Our results suggest that mOMV could be used as a vaccine adjuvant in the development of effective vaccines used to control influenza A virus transmission.  相似文献   

18.

Background  

Rapid diagnosis and surveillance for H5 subtype viruses are critical for the control of H5N1 infection.  相似文献   

19.
Reverse genetics was used to analyze the host range of two avian influenza viruses which differ in their ability to replicate in mouse and human cells in culture. Engineered viruses carrying sequences encoding amino acids 362 to 581 of PB2 from a host range variant productively infect mouse and human cells.  相似文献   

20.
Since the number of human cases of infection with avian H5N1 influenza viruses is ever increasing, a pandemic outbreak caused by these viruses is feared. Therefore, in addition to virus-specific antibodies, there is considerable interest in immune correlates of protection against these viruses, which could be a target for the development of more universal vaccines. After infection with seasonal influenza A viruses of the H3N2 and H1N1 subtypes, individuals develop virus-specific cytotoxic T-lymphocyte responses, which are mainly directed against the relatively conserved internal proteins of the virus, like the nucleoprotein (NP). Virus-specific cytotoxic T lymphocytes (CTL) are known to contribute to protective immunity against infection, but knowledge about the extent of cross-reactivity with avian H5N1 influenza viruses is sparse. In the present study, we evaluated the cross-reactivity with H5N1 influenza viruses of polyclonal CTL obtained from a group of well-defined HLA-typed study subjects. To this end, the recognition of synthetic peptides representing H5N1 analogues of known CTL epitopes was studied. In addition, the ability of CTL specific for seasonal H3N2 influenza virus to recognize the NP of H5N1 influenza virus or H5N1 virus-infected cells was tested. It was concluded that, apart from some individual epitopes that displayed amino acid variation between H3N2 and H5N1 influenza viruses, considerable cross-reactivity exists with H5N1 viruses. This preexisting cross-reactive T-cell immunity in the human population may dampen the impact of a next pandemic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号