首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
筛选得到3株适用作为禽类饲料添加剂的枯草芽孢杆菌,分别命名为B395、B605和BM1。该3株菌株均能够在42℃正常生长,能抑制大肠杆菌、金黄色葡萄球菌,且能耐受0.3%胆盐,能产生淀粉酶、蛋白酶、纤维素酶。通过饲喂试验,观察到菌剂组可明显促进肉鸡生长,有效降低料肉比。选取B395作为试验菌株,以培养后活菌数为指标,得到其最佳固体发酵条件为麦麸∶稻糠为3∶2、葡萄糖0.5%、尿素2%、KH2PO40.5%,含水量45%、接种量5%、温度37℃、培养时间3d。按上述培养条件,对B395进行培养,摇瓶式发酵可使活菌数可达到(1.3±0.1)×1010CFU/g,浅盘式发酵可使活菌数达到(1.3-1.4)×1010CFU/g;并对B605和BM1进行培养,得到活菌数均超过109CFU/g。  相似文献   

2.
地衣芽孢杆菌TS-01固态发酵培养基的优化   总被引:4,自引:0,他引:4  
分离到一株饲用地衣芽孢杆菌TS-01,初步研究了该菌的固态发酵培养基,得到的最优发酵培养基为(g/kg干固体物料)含水量600、红糖7、米糠420、麸皮580.当采用此种配比的培养基,接种量为10%(v/w),发酵2 d后,菌体浓度可达9.15×109CFU/g鲜曲,芽孢浓度可达7.50×109CFU/g鲜曲,芽孢形成率在80%以上.  相似文献   

3.
以吡咯伯克霍尔德氏菌Burkholderia pyrrocinia JK-SH007为出发菌株,对其发酵工艺进行优化,以期提高发酵效率.通过筛选试验、最陡爬坡试验和响应面分析确定影响JK-SH007菌株生长最重要两因素为玉米浆和葡萄糖,其最佳浓度分别为13.88 g/L和3.37 g/L.优化后的发酵工艺培养该菌浓度可达1.18×109 CFU/mL,比优化前提高1.35倍,抑菌活性提高28.84%.  相似文献   

4.
目的以Lactobacillus plantarum SQ-2506为目标,研究该菌株的发酵、冻干工艺及其益生特性。方法通过对培养基中C源、N源和刺激因子的浓度改变考察对活菌数的影响,从而确定培养基的最佳配方;在确定最佳培养基后做出该菌的生长曲线以确定最佳发酵时间点;同时考察冻干保护剂的配方和预冷时间对菌粉活菌数的影响;此外,对植物乳杆菌进行产酸、产H_2O_2、生物膜形成能力、抑菌特性以及抗氧化能力的检测。结果最佳MRS培养基中葡萄糖浓度为0.8%、酪蛋白胨为0.4%、牛肉粉为0.6%、吐温为0.06%;植物乳杆菌的生长曲线在5h时达到稳定期,此时发酵液活菌数为3.16×10~9 CFU/mL,发酵液的pH为4.45。最佳冻干保护剂的配方:脱脂乳100g/L,蔗糖120g/L,抗坏血酸20g/L,谷氨酸钠30g/L;冻干前对上机液预冻时间为2h,此时菌粉冻干存活率为70.21%。该菌株具有产酸、产H_2O_2能力,并对大肠埃希菌、金黄色葡萄球菌和白色假丝酵母均有一定的抑制作用,形成膜能力较强,且具有一定的抗氧化能力。结论通过培养基成分、发酵条件和冻干工艺的优化以及对其益生特性的研究,为下一步新药开发和规模化生产奠定基础。  相似文献   

5.
通过测试保加利亚乳杆菌和嗜热链球菌在乳清培养基中的生长能力,以期获得新型乳品发酵剂工业用培养基。试验结果表明:研制的pH值内控型乳清培养基缓冲能力强,增殖效果佳:嗜热链球菌经42℃培养3h后的活菌数达到0.29×109CFU/mL,培养6h后的活菌数达到0.42×109CFU/mL。在此基础上流加20%氨水恒定pH值,保加利亚乳杆菌和嗜热链球菌的活菌数达到了1.85×109CFU/mL和3.65×108CFU/mL,分别是不加缓冲液培养的7倍和3.5倍。  相似文献   

6.
筛选适宜里氏木霉FS10-C菌株固体发酵的基质,并优化其发酵基本条件,以期为将该菌株应用于土壤重金属污染修复中奠定基础。采用单因素试验对固体发酵基质进行筛选,在筛选结果的基础上,再运用正交试验设计初步确定适宜的发酵条件,并在50 L固体发酵罐中进行放大试验。结果表明,桔皮麦麸混合物为木霉FS10-C的最佳发酵基质,优化后的平皿固体发酵条件为:桔皮、麦麸按1∶1比例配伍,固水比为1∶1.2,接种量为5%,发酵温度为28℃,发酵14 d后产孢量可高达2.43×1010 CFU/g,且应用于固体发酵罐中发酵效果良好,产孢量达到1.44×1010 CFU/g。通过对固体发酵基质的筛选和发酵条件的优化,可实现木霉FS10-C的高密度培养,降低制剂成本,具有规模化生产的潜力。  相似文献   

7.
【背景】莱氏绿僵菌(Metarhizium rileyi)对新入侵我国的草地贪夜蛾(Spodoptera frugiperda)具有较强的致病力和田间流行性,因此具备深入开发的价值。【目的】优化莱氏绿僵菌SZCY固态发酵培养条件,测定所产分生孢子对草地贪夜蛾幼虫的毒力,为提高该菌株分生孢子规模化生产奠定基础。【方法】采用单因素试验确定了相对适宜的固态培养基,利用Box-Behnken响应面法优化该菌株的固态培养基和发酵参数,同时评价不同条件下该菌所产分生孢子对草地贪夜蛾幼虫的毒力。【结果】去颖稻谷(rice)为莱氏绿僵菌SZCY菌株固相产孢最佳载体。培养温度、光周期及酵母浸粉含量是影响莱氏绿僵菌SZCY固态发酵产孢量的主要因素。莱氏绿僵菌SZCY固态发酵最佳工艺参数为温度22.83℃、光周期18.68 h L:5.32 h D、酵母浸粉4.98 g/100 g,在此条件下,莱氏绿僵菌在去颖稻谷固态培养基上的产孢量为5.65×1010孢子/g,用其制备浓度为107孢子/mL的孢子悬浮液,对草地贪夜蛾3龄幼虫的LT50为3....  相似文献   

8.
目的从生产实际出发,对1株高效乳酸杆菌(Lactobacillus spp)LH进行液体发酵培养基优化及发酵条件研究。方法通过碳源、氮源、无机盐、促生长素等单因子筛选及正交试验设计获得以下最佳培养基:糖蜜12 g/L,酵母膏5 g/L,蛋白胨1 g/L,葡萄糖4 g/L,玉米浆3 g/L,乙酸钠5 g/L,NaC l 5 g/L,K2HPO42.5 g/L,KH2PO42.5 g/L,MgSO40.5g/L,MnSO40.25 g/L。在此培养基上研究了该菌株最佳发酵条件。结果培养基初始pH 6.0,接种量2%(v/v,相对装液量),500 m l三角瓶中装液量为500 m l,发酵温度为30~35℃,静置培养。在最佳培养条件下,LH活菌量达到1.74×10^9CFU/m l。结论通过活菌平板计数法测定了乳酸杆菌LH生长曲线,24 h为最佳种龄,生产收获时间是36 h。  相似文献   

9.
[目的]在淡紫拟青霉固体发酵生产过程中,提高淡紫拟青霉分生孢子产量。[方法]通过研究筛选发酵原料和优化固体发酵培养基,控制发酵工艺条件等方法,提高了固体发酵淡紫拟青霉的分生孢子产量。[结果]通过研究固体发酵过程,得出玉米粉作用显著,能显著提高固体发酵淡紫拟青霉的分生孢子数,可达到1.31×1010CFU/g。[结论]该淡紫拟青霉的最优培养基为:麸皮72.5%、玉米粉15%、豆饼粉10%、稻壳2%、硫酸铵0.5%。生产工艺为原料与水的比例为1:0.6,发酵温度为26℃,发酵培养时间为8d。  相似文献   

10.
响应面设计优化绿僵菌固体发酵条件   总被引:4,自引:2,他引:2  
【目的】为了提高绿僵菌分生孢子产量及孢子质量,应用响应面设计对金龟子绿僵菌菌株CY-1(Metarhizium anisopliae)进行固体发酵培养基的优化。【方法】单因素试验基础上,采用响应面试验设计方法优化培养基组分。【结果】添加了碳、氮营养的最佳固体发酵培养基为玉米粉:稻壳=8:2,料水比1:0.8,葡萄糖0.8%,硫酸铵2.5%,磷酸二氢钾0.8%;在固体培养基上的理论产孢量为7.45×10~9个/g;验证后实际为6.94×10~9个/g。【结论】运用响应面法对绿僵菌固体发酵的培养基成分进行优化,得到了绿僵菌孢子粉,为孢子粉进行地下害虫防治和制剂加工的研究奠定了基础。  相似文献   

11.
【目的】球孢白僵菌(Beauveria bassiana)和蜡蚧轮枝菌(Verticillium lecanii)是国内外目前研究应用最广泛的杀虫生防真菌,欲扩大其防治范围、增强防治效果、降低生防成本。【方法】采用共发酵技术,通过组合菌株产孢能力和杀虫毒力比较试验,确定蜡蚧轮枝菌和球孢白僵菌共发酵的可行性。【结果】蜡蚧轮枝菌L-31和球孢白僵菌Q-55共发酵的最佳配比为1:1时,按10%总量接种于发酵培养液中(培养液按酵母膏5.0 g/L、葡萄糖20.0 g/L、麦芽糖提取物5.0 g/L、KH2PO43.0 g/L、黄小米200.0 g/L,pH 6.5配制),23.0°C±0.1°C恒温静置发酵12 d,共发酵液的含孢量可达1×109CFU/mL以上,杀虫毒力比较强,其对温室白粉虱和菜青虫可同时显效,处理9 d后的致死中浓度LC50分别为2.09×104±0.12 CFU/mL和3.17×105±0.11 CFU/mL,发酵液浓度为1×108CFU/mL时的致死中时间LT50分别为2.11±0.14 d和4.27±0.43 d,温室小区试验校正防效在80%以上,与其各单一菌株发酵液的防效之间存在显著性差异。【结论】通过两株生防真菌的共发酵研究,为杀虫真菌的扩谱增效以及植物害虫的有效防治提供科学依据和有效途径。  相似文献   

12.
Pyrolysate obtained from the pyrolysis of waste cotton is a source of fermentable sugars that could be fermented into bioethanol fuel and other chemicals via microbial fermentation. However, pyrolysate is a complex mixture of fermentable and non-fermentable substrates causing inhibition of the microbial growth. The aim of this study was to detoxify the hydrolysate and then ferment it into bio-ethanol fuel in shake flasks and fermenter applying yeast strain Saccharomyces cerevisiae 2.399. Pyrolysate was hydrolyzed to glucose with 0.2 M sulfuric acid, neutralized with Ba(OH)2 followed by treatment with ethyl acetate and activated carbon to remove fermentation inhibitors. The effect of various fermentation parameters such as inoculum concentration, pH and hydrolysate glucose was evaluated in shake flasks for optimum ethanol fermentation. With respect to inoculum concentration, 20% v/v inoculum i.e. 8.0 × 108–1.2 × 109 cells/mL was the optimum level for producing 8.62 ± 0.33 g/L ethanol at 9 h of fermentation with a maximum yield of 0.46 g ethanol/g glucose. The optimum pH for hydrolysate glucose fermentation was found to be 6.0 that produced 8.57 ± 0.66 g/L ethanol. Maximum ethanol concentration, 14.78 g/L was obtained for 4% hydrolysate glucose concentration after 16 h of fermentation. Scale-up studies in stirred fermenter produced much higher productivity (1.32 g/L/h–1) compared to shake flask fermentation (0.92 g/L/h–1). The yield of ethanol reached a maximum of 91% and 89% of the theoretical yield of ethanol in shake flasks and fermenter, respectively. The complex of integrated models of development was applied, that has been successfully tested previously for the mathematical analysis of the fermentation processes.  相似文献   

13.
对拉曼被孢霉突变株F5发酵生产γ—亚麻酸的最适碳源、氮源、发酵时间及温度、无机盐离子添加、最适碳源浓度及补加碳源时间等发酵条件进行了研究探讨。最适发酵培养基组成为 (g/L) :葡萄糖 1 0 0 ,酵母浸出粉 4 ,蛋白胨 1 ,K2 HPO4 1 ,CaCl2 1× 1 0 - 2 ,MgSO4 5× 1 0 - 2 ,FeSO4 1× 1 0 - 2 ,ZnSO4 7.5× 1 0 - 3,CuSO4 0 .5× 1 0 - 3,MnSO4 2× 1 0 - 3,pH 6.0。培养温度为 2 5℃ ,1 4 0r/min振荡培养 1 0天 ,培养 8天后 (即收获前 2天 )补加 5 %葡萄糖。发酵结果为 :DC 2 4 .5 9g/L ,TL 1 0 .84g/L ,TL/DC 4 4.0 9% ,GLA/TL 1 0 .67% ,GLA产量为 1 1 5 6.63mg/L。GLA产量较初始结果提高 1 5 6.1 5 %。该菌株已达到工业化生产菌株要求  相似文献   

14.
从深圳大鹏湾南澳赤潮爆发海域的表层海水中分离得到1株对海洋原甲藻(Prorocentrum micans)具有溶藻活性的海洋细菌,菌株编号为N10。利用液相感染法研究了该溶藻细菌的溶藻效果和溶藻作用方式。结果表明,菌株N10能使藻细胞失去运动活性,并膨胀变形,细胞膜内物质聚集于一端,藻细胞最终破裂死亡。菌悬液接种到藻液中的量越大,初始细菌密度越高,其溶藻效果越强。菌悬液以1∶10的体积比接种到藻液中时,藻细胞在24 h的死亡率为83%,至72 h全部溶解死亡;体积比为1∶20的藻细胞在24 h的死亡率为71%,之后藻细胞密度略有波动,120 h时死亡率达77%;而体积比为1∶100的藻细胞密度在前24 h有所下降,死亡率达39%,之后藻细胞密度又开始明显上升;对照组的藻细胞密度均呈明显上升趋势。菌悬液过滤液和高温加热处理后的菌悬液过滤液对海洋原甲藻均无溶藻活性,表明菌株N10的溶藻方式为直接溶藻。通过16S rRNA序列分析并与GenBank数据进行同源性检索,并结合细菌形态及生理生化特征,菌株N10隶属于黄杆菌科(Flavobacteriaceae)中的Muricauda sp.。  相似文献   

15.
对番茄内生细菌数量动态及其对青枯病的生物防治研究结果表明:番茄内生细菌可来源于种子内部。番茄不同生育期,内生细菌数量最多在成株期,其中抗病品种根、茎分别为24.3×104CFU/g鲜重和22.9×104CFU/g鲜重,感病品种根、茎分别为9.8×104CFU/g鲜重和13.4×104CFU/g鲜重。抗病品种中具有拮抗青枯菌的内生细菌菌株为17个,感病品种中7个。部分内生细菌具促进番茄种子萌发和防治番茄青枯病的作用,其中5R和3R内生菌株的防病效果分别达91.7%和81.3%。  相似文献   

16.
Water hyacinth is a noxious aquatic weed growing over a wide variety of wetland. One of the effective methods of its treatment is rotary drum composting. Hence, microbial succession in the rotary drum composting of water hyacinth was studied along with stability and maturity. Different ratios of water hyacinth, cow dung and sawdust, i.e. 8: 1: 1, 7: 2: 1, 6: 3: 1, 5: 4: 1 and 10: 0: 0 (control), respectively, were taken. A total weight of 150 kg was maintained. Maximum degradation was observed in the trial 3 (6: 3: 1), which showed maximum temperature rise up to 56.5°C. The total mesophilic bacterial count changed from 4.73 × 1012 to 2.5 × 107 colony forming unit (CFU)/g compost during the composting period. Spore forming population reached the highest count of 3.3 × 1010 CFU/g in the thermophilic phase of composting. Actinomycetes, streptomycetes and fungi counts decreased to about 2.4 × 107 CFU/g, 6.5×105 CFU/g and 6.79 × 105 CFU/g, respectively, at the end of composting period. A maximum reduction of 78.7% in oxygen uptake rate and 90.6% in CO2 evolution rate was observed. This showed the highest stability of the compost sample. But the maximum volatile solids reduction of 45.9% signified the high content of recalcitrant lignocellulosic material. Indicator organisms were reduced to acceptable standards of sanitation.  相似文献   

17.
A highly active mosquitocidal mutant of Lysinibacillus sphaericus Ahmed 2362, namely, UCR-146, was efficiently produced on cottonseed meal (CSM) medium, using sand as a carrier under solid state fermentation (SSF). The optimum CSM concentration for the highest sporulation and toxin formation was 12%. The maximum toxicity of the tested organism against second instar larvae of Culex pipiens was obtained at 25% moisture content, initial pH 6–7, 1% sodium acetate, 18.9×106 CFU/g inoculum and 6 days incubation period at 30°C. Pilot scale production of UCR-146 under the optimum SSF conditions was assessed in aluminium trays. Spore count, mortality of larvae and LC50 of the final product were 5.5×1010 CFU/g, 72% at 1 part per million (PPM) and 0.54 PPM, respectively. These results were comparable with those obtained from bench-scale production (in flasks). The cost of 1 kg of this bio-larvicide was estimated at US $0.34.  相似文献   

18.
Biopolymer membrane was prepared using two oppositely charged natural biopolymer. The biopolymer membrane was used for the encapsulation of two hybridoma cell (ATCC CRL-1606, ATCC BH-8852) to produce monoclonal antibodies. In order to reduce the down stream steps, the pore size of the membrane was controlled to retain the monoclonal antibodies in the capsules based on the diffusion experiments with standard proteins. T-flask culture showed cell densities of 8×107 cells/mL and 3×107 cells/mL, and MAb concentrations of 506 μg/mL and 109 μg/mL for encapsulated ATCC CRL-1606 and HB-8852, respectively. Two liter perfusion culture with encapsulated ATCC HB-8852 was performed to enhance the MAb production. The MAb production of the encapsulated hybridoma increased considerably comparing to the culture using silicone tubing for oxygen transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号