首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Na-Ca exchange inhibitory peptide (XIP), which corresponds to residues 251-270 of the Na-Ca exchange protein, specifically inhibits exchange activity (Li, Z., Nicoll, D. A, Collins, A., Hilgemann, D. W., Filoteo, A. G., Penniston, J. T., Weiss, J. N., Tomich, J. M., and Philipson, K. D. (1991) J. Biol. Chem. 266, 1014-1020). We have found that XIP decreased Na+i-dependent Ca2+ uptake to 46 and 20% of control in mixed and inside-out bovine sarcolemmal (SL) vesicles, respectively, and to 22% of control in ferret red cell vesicles. XIP inhibited uptake in bovine SL vesicles after proteolytic digestion. XIP also inhibited Na+o-dependent Ca2+ efflux in bovine SL vesicles but did not inhibit Ca2+ uptake in reconstituted proteoliposomes. Extracellular XIP did not inhibit Ca2+ uptake into intact ferret red cells. Inhibition of uptake in bovine SL vesicles was reduced as the ionic strength was increased. 125I-labeled XIP (1 microM) was cross-linked to proteins of bovine SL vesicles, ferret red cell vesicles, and intact ferret red cells. Labeling of bands at approximately 75, 120, and 220 kDa (in bovine SL vesicles) and bands at 55 and 85 kDa (in ferret red cell vesicles) was detected. No cross-linking was detected in intact ferret red cells. We conclude that XIP inhibition is insensitive to proteolytic digestion and is partially dependent on charge association and conformation of the exchanger. XIP binds to and interacts with the intracellular side of the Na-Ca exchanger.  相似文献   

2.
A method for isolation of guinea-pig cardiomyocytes with pronase has been developed. The method has been assessed in hearts perfused with solutions containing pronase (1 U/ml) and 200 microM Ca2+. Eighty per cent of the cells released were rod-shaped and 1.2 mM Ca2+ tolerant. Enriched medium 199 was used for all solutions. Sodium and slow inward currents recorded from cells dispersed with pronase were similar to those recorded from cells isolated after prolonged exposure to collagenase. Two principal factors are to be marked: (a) presence of high enough amounts of Ca2+ in enzyme solution (up to 200 microM); (b) use of the enriched medium in all the stages of the procedure.  相似文献   

3.
To investigate the underlying ionic mechanism of the late plateau phase of the action potential in rabbit atrium the whole-cell patch-clamp technique with intracellular perfusion was used. We recorded the inward current during repolarizations following a brief 2 ms depolarizing pulse to +40 mV from a holding potential of between -70 and -80 mV. The development of this current coincides with the onset of the late plateau phase of the action potential. Peak activation of the current occurs about 10 ms from the beginning of the depolarizing pulse, and it decays spontaneously with a slow timecourse. Its voltage dependency from -40 mV to +40 mV shows very steep activation (-40 to -20 mV) and shows almost the same maximum magnitude between -10 mV and +40 mV. This behaviour is quite different from that of the calcium current. The inward current and the late plateau phase of the action potential were both abolished by the application of 5 mM EGTA, 1 microM ryanodine and by reducing the Na+ gradient. The fully activated current-voltage relation of the inward current was plotted as the difference current before and after treatment with Ryanodine, Diltiazem, 20 mM Na+ inside or 30% Na+ outside and shows an exponential voltage dependence with the largest magnitude of the current occurring at negative potentials. The current-voltage (I-V) curve was well fitted by the Na-Ca exchange equation, i = A exp (-(1 - r)EF/RT). The results suggest that the inward current contributes to the generation of the late plateau phase of the rabbit atrial action potential, and is activated by intracellular calcium released from the sarcoplasmic reticulum. Sarcoplasmic reticulum calcium release appears to be triggered both by the membrane voltage and by the calcium current. It is concluded that the inward current is generated by Na-Ca exchange.  相似文献   

4.
In single myocytes of the guinea pig taenia coli, dispersed by enzymatic digestion, the late outward current is carried by K+. It has both a Ca2+-activated component and a voltage-dependent component which is resistant to external Co2+. The reversal potential is -84 mV, and the channel(s) for it are highly selective to K+. At 33 degrees C, the activation follows n2 kinetics, with a voltage-dependent time constant of 10.6 ms at 0 mV, which shortens to 1.7 ms at +70 mV. Deactivation follows a single-exponential time course, with a voltage-dependent time constant of 11 ms at -50 mV, which lengthens to 33 ms at -20 mV. During a 4.5-s maintained depolarization, IK inactivates, most of it into two exponential components, but there is a small noninactivating residue. It is surmised that during an action potential under physiological conditions, there is sufficient IK to cause repolarization.  相似文献   

5.
6.
The effects of external protons on single sodium channel currents recorded from cell-attached patches on guinea pig ventricular myocytes were investigated. Extracellular protons reduce single channel current amplitude in a dose-dependent manner, consistent with a simple rapid channel block model where protons bind to a site within the channel with an apparent pKH of 5.10. The reduction in single channel current amplitude by protons is voltage independent between -70 and -20 mV. Increasing external proton concentration also shifts channel gating parameters to more positive voltages, consistent with previous macroscopic results. Similar voltage shifts are seen in the steady-state inactivation (h infinity) curve, the time constant for macroscopic current inactivation (tau h), and the first latency function describing channel activation. As pHo decreases from 7.4 to 5.5 the midpoint of the h infinity curve shifts from -107.6 +/- 2.6 mV (mean +/- SD, n = 16) to -94.3 +/- 1.9 mV (n = 3, P less than 0.001). These effects on channel gating are consistent with a reduction in negative surface potential due to titration of negative external surface charge. The Gouy-Chapman-Stern surface charge model incorporating specific proton binding provides an excellent fit to the dose-response curve for the shift in the midpoint of the h infinity curve with protons, yielding an estimate for total negative surface charge density of -1e/490 A2 and a pKH for proton binding of 5.16. By reducing external surface Na+ concentration, titration of negative surface charge can also quantitatively account for the reduction in single Na+ channel current amplitude, although we cannot rule out a potential role for channel block. Thus, titration by protons of a single class of negatively charged sites may account for effects on both single channel current amplitude and gating.  相似文献   

7.
Summary Previous work showed that amiloride partially inhibits the net gain of Na in cold-stored red cells of guinea pig and that the proportion of unidirectional Na influx sensitive to amiloride increases dramatically with cooling. This study shows that at 37°C amiloride-sensitive (AS) Na influx in guinea pig red blood cells is activated by cytoplasmic H+, hypertonic incubation, phorbol ester in the presence of extracellular Cat2+ and is correlated with cation-dependent H+ loss from acidified cells. Cytoplasmic acidification increases AS Na efflux into Na-free medium. These properties are consistent with the presence of a Na-H exchanger with a H+ regulatory site. Elevation of cytoplasmic free Mg2– above 3 mm greatly increases AS Na influx: this correlates with a Na-dependent loss of Mg2–, indicating the presence of a Na-Mg exchanger.At 20°C activators of Na-H exchange have little or no further stimulatory effect on the already elevated AS Na influx. AS Na influx is much larger than either Na-dependent H+ loss or AS Na efflux at 20°C. The affinity of the AS Na influx for cytoplasmic H+ is greater at 20°C than at 37°C. Depletion of cytoplasmic Mg2+ does not abolish the high AS Na influx at 20°C.Thus, elevation of AS Na influx with cooling appears to be due to increased activity of a Na-H exchanger (operating in a slippage mode) caused by greater sensitivity to H+ at a regulatory site.  相似文献   

8.
Cardiac rhabdomyomatosis of Hartley guinea pigs was examined by light and transmission electron microscopy, and its incidence and distribution were also described. Cardiac rhabdomyomatosis was found in 58 cases out of 345 animals, aged from 1.5 to 17 weeks. A few small lesions were noted in many cases, but large lesions were rare. Most lesions noted in the ventricle were found to measure from 1 mm2 to 5 mm2 in area. The larger lesions were seen near the cardiac apex. In terms of distribution of the lesions, they were observed most frequently in the left ventricular free wall. They were also distributed less frequently in the ventricular septum and in the right ventricular free wall. In bilateral free walls and the ventricular septum, this lesion was frequently noted on the endocardial side and in the tunica muscularis, respectively. Light microscopically, this lesion had a characteristic nodular-reticular structure with large vacuolated cells. Electron microscopy of cardiac rhabdomyomatosis revealed two cell types, A and B. Type A cells were characterized by large aggregates of glycogen particles distributed loosely in the cytoplasm and by myofibrils and mitochondria located at the periphery of the cytoplasm. Type B cells were characterized by large aggregates of mitochondria near the nucleus and at the periphery of the cytoplasm and by large aggregates of glycogen particles with a similar distribution to those in type in type A cells. Myocardial cells in the marginal regions of rhabdomyomatosis lesions showed mitochondrial swelling and rupture of myofibrils.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Ultrastructure of guinea pig mast cells   总被引:1,自引:0,他引:1  
  相似文献   

10.
Kinetic mechanism of guinea pig neutrophil 5-lipoxygenase   总被引:2,自引:0,他引:2  
The kinetic mechanism of guinea pig neutrophil 5-lipoxygenase was investigated using a continuous spectrophotometric assay that monitors product diene formation at 236 nm due to substrate oxygenation. Progress curves for reactions with both arachidonic acid and eicosapentaenoic acid are characterized by 1-3-min lag phases in the attainment of steady-state velocities and product inhibition, as indicated by the total cessation of the reaction prior to complete depletion of substrate. The dependence of the steady-state velocity on arachidonic acid concentration appears to follow Michaelis-Menten kinetics, with Vmax = 4.2 +/- 0.4 nmol of 5-hydroxy-6,8,11,14-eicosatetraenoic acid/min/mg of protein and Ks = 25 +/- 4 microM. The addition of Ca2+ results in an overall activation: lag phases are shortened to 10-20 s, Vmax increases to 24 +/- 2 nmol/min/mg of protein, and Ks decreases to 7.7 +/- 1.7 microM; and a change in a mechanism to one involving substrate inhibition (Kss = 13 +/- 1 microM). The observed activation by Ca2+ has a half-maximal response at around 30 microM. In the presence of Ca2+, ATP causes an increase in Vmax to 30 +/- 4 nmol/min/mg of protein without changing Ks or Kss and a reduction of the lag to less than 5 s. The half-maximal response for ATP is 31 +/- 7 microM. Oxygenation of eicosapentaenoic acid in the presence of Ca2+ and ATP occurs with similar kinetics, except for significantly less substrate inhibition: Vmax = 31 +/- 6 nmol/min/mg of protein, Ks = 7 +/- 1 microM, and Kss = 33 +/- 2 microM. This is the first report suggesting a kinetic mechanism for 5-lipoxygenase, which accounts for substrate inhibition, regulation by Ca2+, and ATP and substrate specificity.  相似文献   

11.
12.
Calcium-induced calcium release mechanism in guinea pig taenia caeci   总被引:14,自引:1,他引:14       下载免费PDF全文
Fura-2 was used to measure the amount of Ca released from the intracellular Ca store of a saponin-skinned smooth muscle fiber bundle of the guinea pig taenia caeci (width, 150-250 microns) placed in a capillary cuvette at 20-22 degrees C. The amount of Ca actively loaded into the store was assayed when released by the application of 50 mM caffeine and/or 10 microM inositol 1,4,5-trisphosphate (IP3) in the absence of ATP, and was found to have a biphasic dependence on the loading [Ca2+] with a peak near pCa 6. After Ca loading at pCa 6, IP3 released almost all the releasable Ca, whereas caffeine discharged Ca from only approximately 40% of the store. The maximum amount of Ca in the store was some 220 mumol/liter cell water. Ca in the caffeine-releasable store was released approximately exponentially to zero with time when Ca2+ was applied in the absence of ATP, and the rate constant of the Ca-induced Ca release (CICR) increased steeply with the concentration of Ca2+ applied. Increase in [Mg2+] (0.5-5.0 mM) or decrease in pH (7.3-6.7) shifted the relation between pCa and the rate of CICR roughly in parallel toward the lower pCa. An adenine nucleotide increased the rate of the CICR, but it did not change the range of effective [Ca2+]. 5 mM caffeine greatly enhanced the CICR mechanism, making it approximately 30 times more sensitive to [Ca2+]. However the drug had no Ca-releasing action in the absence of Ca2+. Procaine in millimolar concentrations inhibited the rate of the CICR. These properties are similar to those of the skeletal muscle CICR and ryanodine receptor channels. Rates of the CICR under a physiological ionic milieu were estimated from the results, and a [Ca2+] greater than 1 microM was expected to be necessary for the activation of the Ca release. This Ca sensitivity seems too low for the CICR mechanism to play a primary physiological role in Ca mobilization, unless assisted by other mechanisms.  相似文献   

13.
Activation of cardiac mast cells has been shown to alter parasympathetic neuronal function via the activation of histamine receptors. The present study examined the ability of prostaglandins to alter the activity of guinea pig intracardiac neurons. Intracellular voltage recordings from whole mounts of the cardiac plexus showed that antigen-mediated mast cell degranulation produces an attenuation of the afterhyperpolarization (AHP), which was prevented by the phospholipase A2 inhibitor 5,8,11,14-eicosatetraynoic acid. Exogenous application of either PGD2 or PGE2 produced a biphasic change in the membrane potential and an inhibition of both AHP amplitude and duration. Examination of prostanoid receptors using bath perfusions (1 microM PGE2 and PGD2), specific agonists (BW245C, sulprostone, and butaprost), and antagonists (AH6809 and SC19220) found evidence for both the PGE2-specific EP2 and EP3 receptors, but not for EP1 or the PGD2-specific prostanoid (DP) receptors. Sulprostone was able to mimic the PGE2 responses in some cells, but not in all PGE2-sensitive cells. Butaprost was able to mimic the PG-induced hyperpolarization in some cells, but did not alter the AHP. Inhibition of specific potassium channels with either TEA, charybdotoxin, or apamin showed that neither TEA nor charybdotoxin could prevent the PGE2-induced AHP attenuation. Apamin alone inhibited AHP duration, with PGs having no further effect in these cells. These results demonstrate that guinea pig intracardiac neurons can be modulated by PG, most likely through either EP2, EP3, or potentially EP4 receptors, and this response is due, at least in part, to a reduction in small-conductance KCa currents.  相似文献   

14.
15.
Currents through DPI 201-106 modified single sodium channels have been measured in cell-free inside-out patches from guinea-pig ventricular myocytes. Single-channel conductance and reversal potential of the sodium channel have been calculated at different intracellular sodium concentrations [( Na+]i) from microscopic I-V curves, which were obtained by application of linear voltage ramps. The relation between the reversal potential and [Na+]i could be fitted with a modified Goldman-Hodgkin-Katz equation with a relative permeability for K+ over Na+ ions of 0.054. The zero-current conductance of the Na channel as a function of [Na+]i shows a plateau value at low Na concentrations, and increases in a sigmoidal manner at higher concentrations. It is concluded that the Na channel can carry outward currents and that its conductance depends on [Na+]i.  相似文献   

16.
The effect of a copper amine oxidase (histaminase) purified from the pea seedling as free or immobilized enzyme on the response to specific antigen was studied in isolated hearts from actively sensitized guinea pigs. In vitro challenge with the specific antigen of hearts from actively sensitized animals evokes a positive inotropic and chronotropic effect, a coronary constriction, followed by dilation and an increase in the amount of histamine and nitrites, the oxidation product of nitric oxide, in the perfusates. In the presence of both forms of histaminases, the positive inotropic and chronotropic responses as well as the coronary constriction and the release of histamine were fully blocked. The amount of nitrites, appearing in the perfusates when anaphylaxis is elicited in the presence of both forms of histaminases, is significantly increased, as well as nitric oxide synthase activity and cyclic GMP content in cardiac tissue, while cardiac calcium overload was significantly prevented. These observations demonstrate that the decrease in the anaphylactic release of histamine and the subsequent abatement of the cardiac response to antigen can be accounted for by the inactivation by histaminase of the released histamine and by a stimulation of endogenous nitric oxide production.  相似文献   

17.
18.
19.
20.
Staining mast cells in sublimate-fixed guinea pig tissue   总被引:2,自引:0,他引:2  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号