共查询到20条相似文献,搜索用时 15 毫秒
1.
Heyu Zhang Xu Nan Xuefen Li Yan Chen Jianyun Zhang Lisha Sun Wenlin Han Tiejun Li 《Biochemical and biophysical research communications》2014
Oral squamous cell carcinoma (OSCC) is one of the most common types of malignancies in the head and neck region. CKLF-like MARVEL transmembrane domain-containing member 5 (CMTM5) has been recently implicated as a tumor suppressor gene in several cancer types. Herein, we examined the expression and function of CMTM5 in oral squamous cell carcinoma. CMTM5 was down-regulated in oral squamous cell lines and tumor samples from patients with promoter methylation. Treatment with the demethylating agent 5-aza-2′-deoxycytidine restored CMTM5 expression. In the OSCC cell lines CAL27 and GNM, the ectopic expression of CMTM5-v1 strongly inhibited cell proliferation and migration and induced apoptosis. In addition, CMTM5-v1 inhibited tumor formation in vivo. Therefore, CMTM5 might act as a putative tumor suppressor gene through promoter methylation in oral squamous cell carcinoma. 相似文献
2.
DNA methylation plays an important role in the etiology and pathogenesis of head and neck squamous cell carcinoma (HNSCC). The current study aimed to identify aberrantly methylated-differentially expressed genes (DEGs) by a comprehensive bioinformatics analysis. In addition, we screened for DEGs affected by DNA methylation modification and further investigated their prognostic values for HNSCC. We included microarray data of DNA methylation (GSE25093 and GSE33202) and gene expression (GSE23036 and GSE58911) from Gene Expression Omnibus. Aberrantly methylated-DEGs were analyzed with R software. The Cancer Genome Atlas (TCGA) RNA sequencing and DNA methylation (Illumina HumanMethylation450) databases were utilized for validation. In total, 27 aberrantly methylated genes accompanied by altered expression were identified. After confirmation by The Cancer Genome Atlas (TCGA) database, 2 hypermethylated-low-expression genes (FAM135B and ZNF610) and 2 hypomethylated-high-expression genes (HOXA9 and DCC) were identified. A receiver operating characteristic (ROC) curve confirmed the diagnostic value of these four methylated genes for HNSCC. Multivariate Cox proportional hazards analysis showed that FAM135B methylation was a favorable independent prognostic biomarker for overall survival of HNSCC patients. 相似文献
3.
DesRochers TM Shamis Y Alt-Holland A Kudo Y Takata T Wang G Jackson-Grusby L Garlick JA 《Epigenetics》2012,7(1):34-46
The microenvironment plays a significant role in human cancer progression. However, the role of the tumor microenvironment in the epigenetic control of genes critical to cancer progression remains unclear. As transient E-cadherin expression is central to many stages of neoplasia and is sensitive to regulation by the microenvironment, we have studied if microenvironmental control of E-cadherin expression is linked to transient epigenetic regulation of its promoter, contributing to the unstable and reversible expression of E-cadherin seen during tumor progression. We used 3D, bioengineered human tissue constructs that mimic the complexity of their in vivo counterparts, to show that the tumor microenvironment can direct the re-expression of E-cadherin through the reversal of methylation-mediated silencing of its promoter. This loss of DNA methylation results from the induction of homotypic cell-cell interactions as cells undergo tissue organization. E-cadherin re-expression is associated with multiple epigenetic changes including altered methylation of a small number of CpGs, specific histone modifications, and control of miR-148a expression. These epigenetic changes may drive the plasticity of E-cadherin-mediated adhesion in different tissue microenvironments during tumor cell invasion and metastasis. Thus, we suggest that epigenetic regulation is a mechanism through which tumor cell colonization of metastatic sites occurs as E-cadherin-expressing cells arise from E-cadherin-deficient cells. 相似文献
4.
Ubiquitin-specific protease 14, a deubiquitinating enzyme, has been implicated in the tumorigenesis and progression of several cancers, but its role in oral squamous cell carcinoma remains to be elucidated. The aim of this study was to explore the expression pattern and roles of Ubiquitin-specific protease 14 in the occurrence and development of oral squamous cell carcinoma. Interestingly, Ubiquitin-specific protease 14 was overexpressed in oral cancer tissues and cell lines at both mRNA and protein levels. b-AP15, a specific inhibitor of Ubiquitin-specific protease 14, significantly inhibited the growth of cancer cells and increased cell apoptosis in a dose-dependent manner. Moreover, knockdown of Ubiquitin-specific protease 14 by shRNA significantly inhibited the proliferation and migration of cancer cells in vitro. Finally, using a xenograft mouse model of oral squamous cell carcinoma, knockdown of Ubiquitin-specific protease 14 markedly inhibited tumor growth and triggered the cancer cell apoptosis in vivo, supporting previous results. In conclusion, for the first time we have demonstrated the expression pattern of Ubiquitin-specific protease 14 in oral squamous cell carcinoma and verified a relationship with tumor growth and metastasis. These results may highlight new therapeutic strategies for tumor treatment, application of Ubiquitin-specific protease 14 selective inhibitor, such as b-AP15, or knockdown by shRNA. Collectively, Ubiquitin-specific protease 14 could be a potential therapeutic target for oral squamous cell carcinoma patients. 相似文献
5.
口腔鳞状细胞癌(OSCC)是口腔颌面部恶性肿瘤中最主要的一类,约占80%以上,好发于男性,但近年来女性的发病率也呈现逐年增加的趋势;microRNA,是一类稳定的短序列非编码RNA,其主要功能是在转录后水平参与靶基因的调控,近来研究已发现在OSCC患者中存在许多异常表达的microRNAs,而这些分子在OSAS的发生发展中扮演着重要的角色,异常的microRNA同样对OSCC的临床诊断、治疗以及判断预后都有着重要的作用;本文对当前microRNA在OSCC中的的异常表达、作用机制以及作为诊断标记物、治疗靶点的潜能进行了综述。 相似文献
6.
Si-yuan Liang Tong-chao Zhao Zhi-hang Zhou Wu-tong Ju Ying Liu Yi-ran Tan Dong-wang Zhu Zhi-yuan Zhang Lai-ping Zhong 《Translational oncology》2021,14(6):101074
Purpose: Carrimycin is a newly synthesized macrolide antibiotic with good antibacterial effect. Exploratory experiments found its function in regulating cell physiology, proliferation and immunity, suggesting its potential anti-tumor capacity. The aim of this study is to investigate the anti-tumor effect of carrimycin against human oral squamous cell carcinoma cells in vitro and in vivo.Methods: Human oral squamous cell carcinoma cells (HN30/HN6/Cal27/HB96 cell lines) were treated with gradient concentration of carrimycin. Cell proliferation, colony formation and migration ability were analyzed. Cell cycle and apoptosis were assessed by flow cytometry. The effect of carrimycin on OSCC in vivo was investigated in tumor xenograft models. Immunohistochemistry, western blot assay and TUNEL assays of tissue samples from xenografts were performed. The key proteins in PI3K/AKT/mTOR pathway and MAPK pathway were examined by western blot.Results: As the concentration of carrimycin increased, the proliferation, colony formation and migration ability of OSCC cells were inhibited. After treating with carrimycin, cell cycle was arrested in G0/G1 phase and cell apoptosis was promoted. The tumor growth of xenografts was significantly suppressed. Furthermore, the expression of p-PI3K, p-AKT, p-mTOR, p-S6K, p-4EBP1, p-ERK and p-p38 were down-regulated in vitro and in vivo.Conclusions: Carrimycin can inhibit the biological activities of OSCC cells in vitro and in vivo, and regulate the PI3K/AKT/mTOR and MAPK pathways. 相似文献
7.
Efterpi Kostareli Thomas Hielscher Manuela Zucknick Lorena Baboci Gunnar Wichmann Dana Holzinger 《Epigenetics》2016,11(1):61-73
Infection with high-risk types of human papilloma virus (HPV) is currently the best-established prognostic marker for head and neck squamous cell carcinoma (HNSCC), one of the most common and lethal human malignancies worldwide. Clinical trials have been launched to address the concept of treatment de-escalation for HPV-positive HNSCC with the final aim to reduce treatment related toxicity and debilitating long-term impacts on the quality of life. However, HPV-related tumors are mainly restricted to oropharyngeal SCC (OPSCC) and there is an urgent need to establish reliable biomarkers for all patients at high risk for treatment failure. A patient cohort (n = 295) with mainly non-OPSCC (72.9%) and a low prevalence of HPV16-related tumors (8.8%) was analyzed by MassARRAY to determine a previously established prognostic methylation score (MS). Kaplan-Meier revealed a highly significant correlation between a high MS and a favorable survival for OPSCC (P = 0.0004) and for non-OPSCC (P<0.0001), which was confirmed for all HNSCC by multivariate Cox regression models (HR: 9.67, 95% CI [4.61–20.30], P<0.0001). Next, we established a minimal methylation signature score (MMSS), which consists of ten most informative of the originally 62 CpG units used for the MS. The prognostic value of the MMSS was confirmed by Kaplan-Meier analysis for all HNSCC (P<0.0001) and non-OPSCC (P = 0.0002), and was supported by multivariate Cox regression models for all HNSCC (HR: 2.15, 95% CI [1.36–3.41], P = 0.001). In summary, the MS and the MMSS exhibit an excellent performance as prognosticators for survival, which is not limited by the anatomical site, and both could be implemented in future clinical trials. 相似文献
8.
Lung cancer is one of the most frequently diagnosed malignant tumors and the main reason for cancer-related death around the world, whereas nonsmall cell lung cancer that consists two subtypes: lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC) is responsible for an estimated 85% of all lung cancers. The current study aimed to explore gene expression and methylation differences between LUAD and LUSC. EdgeR was used to identify differentially regulated genes between normal and cancer in the LUAD and LUSC extracted from The Cancer Genome Atlas (TCGA), respectively, whereas SAM was used to find genes with differential methylation between normal and cancer in the LUAD and LUSC, respectively. Finally, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was performed to analyze the function which these genes enriched in. A total of 391 genes with opposite methylation patterns in LUAD and LUSC and four functional pathways were obtained (false discovery rate (FDR) < 0.1). These pathways mainly included fat digestion and absorption, phenylalanine metabolism, bile secretion, and so on, which were related to the airframe nutrition metabolic pathway. Moreover, two genes CTSE (cathepsin E) and solute carrier family 5 member 7 (SLC5A7) were also found, among which CTSE was overexpressed and hypomethylated in LUAD corresponding to normal lung tissues, whereas SLC5A7 showed the opposite in LUAD. In conclusion, this study investigated the differences between the gene expression and methylation patterns in LUAD and LUSC, and explored their different biological characteristics. Further understanding of these differences may promote the discovery and development of new, accurate strategies for the prevention, diagnosis, and treatment of lung cancer. 相似文献
9.
《Microbes and infection / Institut Pasteur》2022,24(3):104925
Oral cancer contributes significantly to the global cancer burden. Oral bacteria play an important role in the spread of oral cancer, according to mounting evidence. The most proven instance is the carcinogenic implications of Porphyromonas gingivalis, a key pathogen in chronic periodontitis. It is imperative to understand the pathogenesis of P. gingivalis in OSCC. This review aims to gather and assess scientific shreds of evidence on the involvement of P. gingivalis in the molecular mechanism of oral squamous cell carcinoma. 相似文献
10.
Naoki Ikehata Masakatsu Takanashi Takafumi Satomi Masato Watanabe On Hasegawa Michihide Kono Ai Enomoto Daichi Chikazu Masahiko Kuroda 《Biochemical and biophysical research communications》2018,495(3):2227-2234
Recent studies have revealed that Toll-like receptors (TLRs) are highly expressed and activated in many types of cancer. Physiologically, TLR2 recognizes bacteria and other microorganisms in the oral cavity; however, the role of TLR2 in oral squamous cell carcinoma (OSCC) is unclear. In this study, we demonstrated that TLR2 is highly expressed in OSCC in comparison with adjacent non-malignant tissue. TLR2 was also expressed in OSCC-derived cell lines, and its expression was activated by ligands derived from bacteria and mycoplasma. Furthermore, to elucidate the mechanism of OSCC progression via TLR2 signal transduction, we focused on microRNAs (miRNAs) that are induced by TLR2 activation. Interestingly, ligand activation of TLR2 induced the expression of miR-146a and we found that downregulation of caspase recruitment domain–containing protein 10 (CARD10) mRNA in OSCC-derived cell lines. Moreover, knockdown of CARD10 induced resistance to cisplatin-induced apoptosis in OSCC cells. These findings suggest that the activation of TLR2 by bacterial components can enhance the progression of OSCC and may be implicated in acquired resistance to cisplatin-induced apoptosis through regulation of the miR-146a pathway. 相似文献
11.
Dysregulation of miR-203 by promoter methylation is associated with the development of various cancers. We aimed to explore the underlying link between promoter methylation and miR-203 expression in Kazakh esophageal squamous cell carcinoma (ESCC). MassARRAY® System spectrometry was used to quantitatively analyze the DNA methylation of 32 CpG sites within miR-203 in 99 Kazakh ESCC and 46 normal esophageal tissues (NETs) with similar population characteristics. We conducted real-time PCR to detect miR-203 expression levels and evaluated their association with methylation. Eleven CpG units within miR-203 promoter were frequently hypermethylated in ESCC compared with NETs (P < 0.05). The hypermethylation of several CpG units positively correlated with age, lower esophagus, constrictive type of ESCC, and moderately differentiated ESCC. Given the involvement of human papillomavirus (HPV) in etiology of ESCC was confirmed from our previous reports, herein we found that CpG units within miR-203 in HPV16-positive ESCC are more heavily methylated. Furthermore, miR-203 expression showed a nearly 4.5-fold decrease in ESCC than NETs (0.206 ± 0.336 vs. 0.908 ± 1.424, P < 0.001) and was significantly associated with lymph node metastasis (P = 0.012). The expression of miR-203 with 11 completely hypermethylated CpG units was approximately 6.5-fold lower than that with at least 1 unmethylated CpG unit (P < 0.001) and especially the CpG_15.16 and CpG_31.32 with higher methylation levels in ESCC tissues exhibited lower expression levels of miR-203, which indicated a reverse association between miR-203 methylation and expression. Hypermethylated miR-203 is a potential biomarker and targeted delivery of miR-203 could therefore serve as a preventive or therapeutic strategy for Kazakh ESCC. 相似文献
12.
13.
14.
Sabnam Parbin Nibedita Pradhan Laxmidhar Das Priyanka Saha Moonmoon Deb Dipta Sengupta Samir Kumar Patra 《Experimental cell research》2019,374(2):323-332
Microtubule associated tumor suppressor 1 (MTUS1) has been recognized as a tumor suppressor gene in multiple cancers. However, the molecular mechanisms underlying the regulation of MTUS1 are yet to be investigated. This study aimed to clarify the significance of DNA methylation in silencing MTUS1 expression. We report that MTUS1 acts as tumor suppressor in non-small cell lung carcinoma (NSCLC). Analysis of in silico database and subsequent knockdown of DNMT1 suggested an inverse correlation between DNMT1 and MTUS1 function. Interestingly, increased methylation at MTUS1 promoter is associated with low expression of MTUS1. Treatment with DNA methyltransferases (DNMTs) inhibitor, 5-aza-2′-deoxycytidine (AZA) leads to both reduced promoter methylation accompanied with enrichment of H3K9Ac and enhanced MTUS1 expression. Remarkably, knockdown of MTUS1 showed increased proliferation and migration of NSCLC cells in contrast to diminished proliferation and migration, upon treatment with AZA. We concluded that low expression of MTUS1 correlates to DNA methylation and histone deacetylation in human NSCLC. 相似文献
15.
16.
Marcus Franz Karin Spiegel Claudia Umbreit Petra Richter Carolina Codina-Canet Angela Berndt Annelore Altendorf-Hofmann Sven Koscielny Peter Hyckel Hartwig Kosmehl Ismo Virtanen Alexander Berndt 《Histochemistry and cell biology》2009,131(5):651-660
Snail is a regulator of epithelial–mesenchymal transition (EMT) and considered crucial to carcinoma metastasis, myofibroblast
transdifferentiation, and fibroblast activation. To investigate the role of Snail in oral squamous cell carcinoma (OSCC),
its immunohistochemical expression was analysed in 129 OSCC samples and correlated to nodal metastasis, histological grade,
E-cadherin, and alpha smooth-muscle-actin (αSMA). The results were compared to findings in 23 basal cell carcinomas (BCC).
Additionally, the influence of TGFβ1 and EGF on Snail, E-cadherin, vimentin, and αSMA expression was analysed in two OSCC
cell lines. As a result, Snail-positive cells were mainly found in the stroma of the OSCC invasive front without statistically
significant correlation to histological grade or nodal metastasis. Snail was co-localised to αSMA but not to E-cadherin or
cytokeratin and showed a significant correlation to the loss of membranous E-cadherin. All BCCs were Snail negative. In OSCC
culture, the growth-factor-mediated EMT-like phenomenon was accompanied by αSMA down-regulation. In summary, Snail expression
in OSCC is a stromal phenomenon associated with the myofibroblast phenotype and not related to growth-factor-mediated transdifferentiation
of the carcinoma cells themselves. Consequently, Snail immunohistochemistry cannot contribute to the prediction of the metastatic
potential. Furthermore, stromal Snail expression is suggested to be the result of mutual paracrine interaction of fibro-/myofibroblasts
and dedifferentiated carcinoma cells leading to the generation of a special type of carcinoma-associated fibroblasts.
M. Franz and K. Spiegel have contributed equally to the study. 相似文献
17.
Jie Wang Feng Sun Xiaoyu Lin Zaiye Li Xiaohe Mao Canhua Jiang 《Experimental cell research》2018,362(1):203-208
Several species of Streptococcus, such as S. salivarius, S. mitis, and S. anginosus, are found to extensively colonize the oral cavity and the upper respiratory tract, and have been shown to increase in patients with oral squamous cell carcinoma (OSCC). Accumulating evidence have revealed that commensal bacteria are involved in antitumor immunity via T cell-mediated mechanisms, but the role of Streptococcus enrichment in OSCC is yet unclear. In this study, we stimulated peripheral blood mononuclear cells from non-cancer controls (NCs) and OSCC patients with S. salivarius, S. mitis, and S. anginosus. We observed that compared to NC subjects, OSCC patients at earlier stages had higher frequencies of granzyme B-expressing CD8 T cells for all Streptococcus species tested, while OSCC patients at more advanced stages had higher frequencies of granzyme B-expressing CD8 T cells for S. anginosus but not other Streptococcus species. In OSCC patients, the Streptococcus-reactive CD8 T cells presented significantly lower levels of PD-1 and TIM-3 expression than Streptococcus-nonreactive CD8 T cells. The clinical outcomes of OSCC patients in our cohort were tracked for 24 months after the resection of the primary tumor. In patients that did not present tumor recurrence, the frequencies of S. salivarius-reactive and S. mitis-reactive CD8 T cells were significantly higher than that in patients that developed recurrent tumor. Furthermore, in patients with tumor recurrence, the duration between primary tumor resection and tumor recurrence was positively associated with the frequencies of S. salivarius-reactive and S. anginosus-reactive CD8 T cells. Together, we demonstrated that Streptococcus-reactive CD8 T cell responses might contribute to antitumor immunity in OSCC patients. 相似文献
18.
Yanping Chen Naiheng Hei Jianguang Zhao Shixiong Peng Kaicheng Yang He Chen Zifeng Cui Linyu Jin Ran Sun Jingxin Guo 《Journal of cellular biochemistry》2019,120(6):9082-9090
Oral squamous cell carcinoma (OSCC) represents one of the most common head and neck cancer that with dire prognosis due partly to the lack of reliable prognostic biomarker. Here, we aimed to develop a CpG site–based prognostic signature through which we could accurately predict overall survival (OS) of patients with OSCC. We obtained OSCC-related DNA methylation and gene expression data sets from the public accessible Gene Expression Omnibus. Correlations between methylation level of CpG sites and OS of patients with OSCC were assessed by univariate Cox regression analysis followed by robust likelihood-based survival analysis on those CpG sites with permutation P < 0.05 for further screening the optimal CpG sites for OSCC OS prediction based on the risk score formula that composed of the methylation level of optimal CpG sites weighted by their regression coefficients. Besides, differential expression genes (DEGs) and differential methylation genes (DMGs) in OSCC samples compared with normal samples were obtained and shared genes were considered as vital genes in OSCC tumorgenesis and progression. As a result, two CpG sites including cg17892178 and cg17378966 that located in NID2 and IDO1, respectively, were identified as the optimal prognostic signatures for OSCC OS. In addition, 12 overlapping genes between DEGs and DMGs that closely associated with inflammation or blood and tissue development–related biological processes were obtained. In conclusions, this study should provide valuable signatures for OSCC diagnosis and treatment. 相似文献
19.