首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
土壤重金属积累严重影响植物生长和生态系统平衡,探寻植物对重金属的耐性机理尤为重要.菠菜可能具有一定的耐铜性,但Cu对其矿质元素吸收、细胞超微结构等方面的耐性机理尚不明确.本研究以菠菜幼苗为研究对象,通过盆栽试验,探究不同浓度铜处理对菠菜幼苗生长、矿质元素吸收、叶片细胞超微结构等指标的影响.结果表明: 100 mg·L-1 CuSO4处理浓度时,菠菜幼苗根Cu2+积累量小于地上部,其根系生长量增加,地上部生长量稍有下降,继续增加铜处理浓度,植物体各器官生长参数均呈下降趋势.低浓度铜处理时(<400 mg·L-1 CuSO4),菠菜幼苗叶N、K、Ca、Mg、Fe含量增加,P含量减少;根N、P、K含量减少,Ca、Mg、Fe含量增加;叶片细胞内各细胞器清晰可见,基粒片层排列仍较为整齐,叶绿体内外膜完整.高浓度铜处理时(>600 mg·L-1 CuSO4),菠菜幼苗叶N含量增加,P、K、Ca、Mg、Fe含量减少;根N、P、K、Ca、Mg、Fe含量均减少;叶片细胞内叶绿体变圆,叶绿体膜变薄,基质、基粒片层变少,层堆积高度下降,细胞核解体,液泡、细胞壁中有黑色小点分布,可能是大量Cu2+聚集导致细胞内膨压增大所致.低浓度铜处理并未对菠菜幼苗的生长生理特性产生明显的负面影响,而高浓度铜处理并未终止菠菜幼苗的生长.说明菠菜幼苗具有一定的耐铜性.  相似文献   

2.
Summary Inhibition of internodial growth of pea seedlings by light is compensated for by increased growth of leaves. At a given time the sum of fresh weight of internodes plus the product of fresh weight of leaves times a certain factor is constant in darkness or with different periods of light. This correlation may reflect a competition of internodes and leaves for materials delivered at a lightindependent rate from the cotyledons. This hypothesis was tested by immersing roots of pea seedlings into 86Rb labelled K-solutions for one day in darkness, removing the plants from the solutions, exposing the seedlings to near or far red light and measuring the radioactivity and fresh weights of leaves and internodes separately. Radioactivity and fresh-weight were both dependent on phytochrome; i.e. inhibition of ion uptake and of growth in internodes and promotion of both processes in leaves by near red light as compared to dark or far red controls are mediated by phytochrome.Short time experiments of ion uptake by the roots show that K transport into the shoot organs is promoted by light after a lag phase of somewhat more than one hour. This interval corresponds well to the lag phase of the light induced growth inhibition of internodes.Seedlings deprived of cotyledons and roots grow well in water but exhibit no difference in growth rate of leaves and internodes in light and darkness. Light dependence is restored if the seedlings are submersed in approximately 3% sucrose solutions. This result seems to indicate that the influence of light on growth rates of leaves and internodes is dependent on the uptake of material by the cell. It seems possible that in the etiolated pea seedling light promotes growth of leaves by promoting uptake and hampers growth of internodes by inhibiting uptake of essential growth material delivered from the cotyledons.  相似文献   

3.
Mg(2+) is one of the essential elements for bacterial cell growth. The presence of the magnesium cation (Mg(2+)) in various concentrations often affects cell growth restoration in plant-associating bacteria. This study attempted to determine whether Mg(2+) levels in Sphingomonas yanoikuyae EC-S001 affected cell growth restoration in the host plant and what the threshold level is. S. yanoikuyae EC-S001, isolated from the rhizoplane of spinach seedlings grown from surface-sterilized seeds under aseptic conditions, displayed uniform dispersion and attachment throughout the rhizoplane and phylloplane of the host seedlings. S. yanoikuyae EC-S001 did not grow in potato-dextrose broth medium but grew well in an aqueous extract of spinach leaves. Chemical investigation of the growth factor in the spinach leaf extract led to identification of the active principle as the magnesium cation. A concentration of ca. 0.10 mM Mg(2+) or more allowed S. yanoikuyae EC-S001 to grow in potato-dextrose broth medium. Some saprophytic and/or diazotrophic bacteria used in our experiment were found to have diverse threshold levels for their Mg(2+) requirements. For example, Burkholderia cepacia EC-K014, originally isolated from the rhizoplane of a Melastoma sp., could grow even in Mg(2+)-free Hoagland's no. 2 medium with saccharose and glutamine (HSG medium) and requires a trace level of Mg(2+) for its growth. In contrast, S. yanoikuyae EC-S001, together with Bacillus subtilis IFO12113, showed the most drastic restoring responses to subsequent addition of 0.98 mM Mg(2+) to Mg(2+)-free HSG medium. Our studies concluded that Mg(2+) is more than just the essential trace element needed for cell growth restoration in S. yanoikuyae EC-S001 and that certain nonculturable bacteria may require a higher concentration of Mg(2+) or another specific essential element for their growth.  相似文献   

4.
5.
In spinach seedlings and roots, NADH-nitrate reductase (NR)activity (per g fresh weight) decreased as the seedlings aged.Experiments using double immunodiffusion analysis and immunotitrationshowed no differences in the immunological properties of NRfrom spinach seedlings at various stages of aging. Comparisonof spinach leaf to the spinach root enzyme using the Ouchterlonydouble diffusion technique revealed a high degree of similaritybetween them. (Received November 6, 1985; Accepted March 4, 1986)  相似文献   

6.
The effect of light on symplastic communication in dark grown maize seedlings was tested using the symplastic probe carboxyfluorescein. Prior white-light irradiation stimulated longitudinal transport of carboxyfluorescein in the mesocotyl stele of dark-grown seedlings. The stimulation was multiphasic with a positive followed by a negative phase. Lateral transport from the stele into the mesocotyl cortex was inhibited by the prior white-light irradiation. The inhibitory effect of prior white-light irradiation on lateral transport was completely photo-modulatable by terminal farred and far-red/red irradiations, suggesting the involvement of phytochrome. The stimulatory effect of the prior white irradiation observed for the stele, however, was not photoreversible. It is suggested that environmental factors, such as light, might modulate growth and development, in part, by modulating symplastic cell to cell communication and thus the distribution of nutrients and growth regulators.  相似文献   

7.
8.
The light-regulated expression of eight nuclear-encoded genes for plastid proteins from spinach (Spinacia oleracea) (RBCS-1 and CAB-1; ATPC and ATPD, encoding the subunits gamma and delta of the ATP synthase; PC and FNR; PSAD and PSAF, encoding the subunits II and III of photosystem I reaction center) was analyzed with promoter/beta-glucuronidase (GUS) gene fusions in transgenic tobacco (Nicotiana tabacum and Nicotiana plumbaginifolia) seedlings and mature plants under standardized light and growth conditions. Unique response patterns were found for each of these promoters. GUS activities differed more than 30-fold. Strong promoters were found for the PC and PSAD genes. On the other hand, the ATPC promoter was relatively weak. Expression of the CAB/GUS gene fusion in etiolated material was at the detection limit; all other chimeric genes were expressed in the dark as well. Light stimulation of GUS activities ranged from 3- (FNR promoter) to more than 100-fold (CAB-1 promoter). The FNR promoter responded only to red light (RL) and not significantly to blue light (BL), whereas the PC promoter contained regions with different sensitivities toward RL and BL. Furthermore, different RNA accumulation kinetics were observed for the PSAF, CAB, FNR, and PC promoter/GUS gene fusions during de-etiolation, which, at least in the case of the PSAF gene, differed from the regulation of the corresponding endogenous genes in spinach and tobacco. The results suggest either that not all cis elements determining light-regulated and quantitative expression are present on the spinach promoter fragments used or that the spinach cis-regulatory elements respond differently to the host (tobacco) regulatory pathway(s). Furthermore, as in tobacco, but not in spinach, the trans-gene hardly responds to single light pulses that operate through phytochrome. Taken together, the results suggest that the genes have been independently translocated from the organelle to the nucleus during phylogeny. Furthermore, each gene seems to have acquired a unique set of regulatory elements.  相似文献   

9.
Characterized by a photo—catalysis property, nano-anatase TiO2 is closely related to photosynthesis of spinach. It could not only improve light absorbance, transformation from light energy to electron energy and active chemical energy, but also promote the activity of Rubiso activase of spinach. However, the relation between the activity of Rubiso activase and the growth of spinach promoted by nano-anatase TiO2 treatment remains largely unclear. In this study, we find that the amount and the activity of Rubiso activase are obviously increased by nano-anatase TiO2 treatment, which led to the great promotion of Rubsico carboxylation and the high rate of photosynthesis, thus improving of spinach growth. The significant enhancement of Rubiso activase activity of nano-anatase TiO2 treated spinach is also accompanied by conformational changes as determined by spectroscopic analysis. But bulk TiO2 effect is not as significant as nano-anatase TiO2, as the grain size of nano-anatase TiO2 (5 nm) is much smaller than that of bulk TiO2, which entered spinach cell more easily.  相似文献   

10.
对钟萼木Bretschneidera sinensis实播育苗、苗木物候期生长及不同试验点与不同培育方式的苗木生长进行研究。结果表明,该树种种子经催芽后发芽率达90%以上,苗木高与地径生长期主要在4~10月,10月后进入木质化状态,生长期较短是影响生长量的重要原因;高温与强光照对苗木顶芽与幼嫩叶产生灼伤影响,高温季节需进行遮荫;在高温高湿季节,易遭受病虫害为害,需加强病虫害防治。不同育苗方法表明,该树种大田裸根苗培育比容器苗更有利于苗木生长;不同生长类型的生长情况表明,良好的遗传个体在苗期表现良好的生长潜能。  相似文献   

11.
12.
Development of the primary bean leaf in the dark and under continuous white light was studied during 14 days after sowing. The increase in surface area of the blade is the result of a number of sequential processes. Both in the darkness and under illumination, leaf growth is characterized by an initial cell enlargement followed by intensive cell division. Cell division in etiolated leaves continues for one day longer than in illuminated ones, but it proceeds at a slower rate. Mature leaves grown under white light undergo a phase of cell enlargement after cell division has stopped. This increases their surface area up to 800 times when compared with the blade area of the embryo. This enlargement phase is almost absent in dark-grown seedlings. Consequently the blade area of etiolated leaves is only 50 times that of the embryonic state. Thus light appears to have a dual effect on leaf development: it activates cell division and induces cell expansion.  相似文献   

13.
14.
The developmental pattern of dark-grown Arabidopsis thaliana is dramatically shifted by exposure of the seedlings to light: inhibition of hypocotyl (stem) growth is one of the typical responses. Here, we show that the hypocotyl growth of dark-grown seedlings is reduced by exposure of the seeds to light. The light signal is perceived by phytochromes A and B during the hours immediately prior to seed germination. The effect is obviously selective, as other processes under phytochrome control were not equally affected by the pre-germination light cue. The hypocotyl response persists for two days after termination of the light signal, which is more than the persistence observed when the seedlings themselves receive the light stimulus. Treatment with far-red light, which converts phytochrome to the inactive form, did not reduce the hypocotyl growth response to pre-germination light, indicating that the persistent signal was not active phytochrome itself. We propose that trans-developmental phase signals could help plants to adjust to their environment.  相似文献   

15.
Light significantly inhibits hypocotyl cell elongation, and dark-grown seedlings exhibit elongated, etiolated hypocotyls. Microtubule regulatory proteins function as positive or negative regulators that mediate hypocotyl cell elongation by altering microtubule organization. However, it remains unclear how plants coordinate these regulators to promote hypocotyl growth in darkness and inhibit growth in the light. Here, we demonstrate that WAVE-DAMPENED 2–LIKE3 (WDL3), a microtubule regulatory protein of the WVD2/WDL family from Arabidopsis thaliana, functions in hypocotyl cell elongation and is regulated by a ubiquitin-26S proteasome–dependent pathway in response to light. WDL3 RNA interference Arabidopsis seedlings grown in the light had much longer hypocotyls than controls. Moreover, WDL3 overexpression resulted in overall shortening of hypocotyl cells and stabilization of cortical microtubules in the light. Cortical microtubule reorganization occurred slowly in cells from WDL3 RNA interference transgenic lines but was accelerated in cells from WDL3-overexpressing seedlings subjected to light treatment. More importantly, WDL3 protein was abundant in the light but was degraded through the 26S proteasome pathway in the dark. Overexpression of WDL3 inhibited etiolated hypocotyl growth in regulatory particle non-ATPase subunit-1a mutant (rpn1a-4) plants but not in wild-type seedlings. Therefore, a ubiquitin-26S proteasome–dependent mechanism regulates the levels of WDL3 in response to light to modulate hypocotyl cell elongation.  相似文献   

16.
17.
Three h white light irradiation of etiolated maize seedlings ( Zea mays L. cv. Jubilee) inhibited mesocotyl elongation and caused a sharp decrease in cell wall plastic extensibility as measured by the Instron technique. The plastic extensibility following white light irradiation (3 h) was photomodulated by phytochrome. Although the photomodulation of the plastic extensibility was correlated with growth during 20 h, no such correlation was observed at shorter times. The addition of indole-3-acetic acid to light-inhibited intact seedlings, or seedlings from which the coleoptile and inner leaves were excised, resulted in a stimulation of growth. However, none of the IAA concentrations could reverse light inhibition. The possibility of a correlative relationship between phytochrome, auxin and cell wall extensibility is discussed.  相似文献   

18.
Rhizobitoxine has previously been shown to inactivate irreversibly β-cystathionase isolated from spinach. In the present studies, rhizobitoxine was shown to inhibit partially β-cystathionase of spinach and corn seedlings in vivo. An activity of 30 to 40% of normal remained in toxin-treated seedlings of both spinach and corn. Possible reasons for the partial inhibition are discussed.  相似文献   

19.
山地落叶阔叶林优势树种米心水青冈幼苗的定居   总被引:8,自引:4,他引:8  
郭柯 《应用生态学报》2003,14(2):161-164
在郁闭的林冠下、模拟林窗和林间空旷地3种光照环境中,研究了施肥和未施肥的米心水青冈幼苗生存和生长发育过程.结果表明,幼苗在林下的发育受到光照不足的严重抑制,生长在林下的幼苗比生长在林窗和空旷地幼苗死亡快,死亡率高,幼苗在郁闭林下能够生存的时间不超过12周.施肥处理的幼苗比对照的幼苗死亡快,死亡率高.幼苗死亡很可能与土壤中的病原生物有关.虽然由林下光照强度增加到模拟林窗的光照强度后,幼苗发育有明显改善,但幼苗在模拟林窗环境和空旷地的生长没有显著差异.结果说明,米心水青冈新出土的幼苗在郁闭林冠下易受伤害,更新立苗阶段需要有比较好的光照条件,肥沃土壤可能也无助于改善郁闭林冠下幼苗的定居.  相似文献   

20.
Effects of white, blue, red and far-red lights on the elongationgrowth of intact primary roots in rice seedlings were investigated.White light inhibited elongation of root cells. Blue light inhibitedboth cell elongation and cell multiplication, but red lightinhibited only cell elongation. The effect of far-red lightwas almost the same as that of the red. The lights exerted;the same effects on the growth of primary roots irrespectiveof age of the seedlings. The inhibitory effects of the lightswere also observed when the root of the deshooted seedlingswas irradiated, but not when only the shoot of the seedlingswas irradiated. It was inferred that it is not the shoot butthe root which responds to the light in this phenomenon. DCMUhardly affected root growth at a concentration so high as toinhibit strongly photosynthesis in the shoot. The possibilitythat photosynthesis participates directly in the photoinhibitionof root growth in rice seedlings was excluded. 1 Present address: Tohoku National Agricultural Experiment Station,Morioka  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号