首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The addition of ethylene glycol, and 1,2- and 1,3-propanediol, decreases the bulk dielectric constant of the medium, and according to CD measurements, increases significantly the proportion of helical structure in β-lactoglobulin. The medium-induced folding changes followed by limited peptic hydrolysis show that the cleavage of β-lactoglobulin by pepsin is triggered by structural transformations induced by ethylene glycol only and not by 1,2- and 1,3-propanediol. Density measurements, at constant chemical potential and constant molality, demonstrate that all diols are present in the immediate domain of the protein. They are engaged in hydrophobic interactions with the amino acids of β-lactoglobulin core inducing the formation of additional α-helices. © 1996 John Wiley & Sons, Inc.  相似文献   

2.
M Rüegg  V Metzger  H Susi 《Biopolymers》1975,14(7):1465-1471
Infrared spectra of myoglobin, ribonuclease, lysozyme, α-chymotrypsin, α-lactalbumin, and β-lactoglobulin A were obtained in deuterium oxide solution in units of absorbance versus wavenumber from 1340 to 1750 cm?1. The spectra were resolved into Gaussian components by means of an iterative computer program. Resolved characteristic absorption peaks for the two infrared active amide I′ components of antiparallel chain-pleated sheets (β-structure) were obtained. The characteristic amide I′ peaks of α-helical regions and apparently unordered regions overlap in D2O solution. Absorptivity values for the resolved β-structure peak around 1630 cm?1 were estimated on the basis of the known structure of ribonuclease, lysozyme, and β-chymotrypsin. The β-structure content of β-lactoglobulin was estimated to be ca. 48% of α-lactalbumin ca. 18%, and of αs-casein close to zero. The results are in general agreement with conclusions drawn from circular dichroism and optical rotatory dispersion studies.  相似文献   

3.
Sakurai K  Fujioka S  Konuma T  Yagi M  Goto Y 《Biochemistry》2011,50(29):6498-6507
Folding experiments have suggested that some proteins have kinetic intermediates with a non-native structure. A simple G ?o model does not explain such non-native intermediates. Therefore, the folding energy landscape of proteins with non-native intermediates should have characteristic properties. To identify such properties, we investigated the folding of bovine β-lactoglobulin (βLG). This protein has an intermediate with a non-native α-helical structure, although its native form is predominantly composed of β-structure. In this study, we prepared mutants whose α-helical and β-sheet propensities are modified and observed their folding using a stopped-flow circular dichroism apparatus. One interesting finding was that E44L, whose β-sheet propensity was increased, showed a folding intermediate with an amount of β-structure similar to that of the wild type, though its folding took longer. Thus, the intermediate seems to be a trapped intermediate. The high α-helical propensity of the wild-type sequence likely causes the folding pathway to circumvent such time-consuming intermediates. We propose that the role of the non-native intermediate is to control the pathway at the beginning of the folding reaction.  相似文献   

4.
Conformational transitions of alternating copoly(l-leucyl-l-lysine) and copoly(l-leucyl-l-ornithine) in organic solvents and in alcohol-water mixtures were determined by c.d. measurements and the results compared with those from random copoly(Leu48.3, Lys51.7). As reported previously16,17, in salt-free water these alternating copolymers undergo a conformational transition from a disordered to β-structure when the pH is raised or when various salts are added, whereas random copolymers adopt an α-helix conformation under similar conditions. However, both alternating copolymers reveal a tendency to form α-helix in 2,2,2-trifluoroethanol and in alcohol-water mixtures at neutral pH, as does the random copolymer. The alcohol concentration at which the α-helix can be induced is dependent on the kind of alcohol, the α-helix promoting power follows the the series: 2,2,2-trifluoroethanol > isopropanol > ethanol > methanol. In addition, these alternating copolymers in methanol-water mixtures below 50% (by volume) methanol form the β-structure when the pH is raised. On the other hand, above 60% methanol the fraction of α-helix already formed at neutral pH is enhanced at higher pH-values.  相似文献   

5.
Conformational changes of bovine α-lactalbumin in sodium dodecyl sulfate (SDS) solution were studied with the circular dichroism (CD) method using a dilute phosphate buffer ofpH 7.0 and ionic strength 0.014. The proportions of α-helix and β-structure in α-lactalbumin were 34% and 12%, respectively, in the absence of SDS. In the SDS solution, the helicity increased to 44%, while the β-structure disappeared. In order to verify the structural change from β-structure to α-helix, the moiety, assuming the β-structure in the α-lactalbumin, was isolated by a chymotryptic digestion. The structure of this α-lactalbumin fragment, Phe31-Ile59, was almost disordered. However, the fragment adopted a considerable amount of α-helical structure in the SDS solution. On the other hand, the tertiary structure of α-lactalbumin, detected by changes of CD in the near-ultraviolet region, began to be disrupted before the secondary structural change in the surfactant solution. Dodecyl sulfate ions of 80 mol were cooperatively bound to α-lactalbumin. Although the removal of the bound dodecyl sulfate ions was tried by the dialysis against the phosphate buffer for 5 days, 4 mol dodecyl sulfates remained per mole of the protein. The remaining amount agreed with the number of stoichiometric binding site, determined by the Scatchard plot, indicating that the stoichiometric binding was so tight.  相似文献   

6.
The interaction of bovine and human whey proteins with retinol and palmitic acid has been studied. Using gel filtration it was found that bovine β-lactoglobulin and α-lactalbumin and serum albumin from both species bind retinol in vitro while the ability to bind palmitic acid is restricted to bovine β-lactoglobulin and bovine and human serum albumin. Using equilibrium dialysis, β-lactoglobulin was found to display two binding sites for retinol per dimeric molecule with an association constant of 1.5 × 104m-1. Competition experiments showed that when the concentration ratio between total fatty acids and retinol is similar to that found in milk, palmitic acid competes with the binding of retinol to β-lactoglobulin.  相似文献   

7.
The interaction between bovin β-Lactoglobulin (β-LG) and retinol at two different pH values was investigated by multispectroscopic, zeta potential, molecular modeling, and conductometry measurements. The steady state and polarization fluorescence spectroscopy revealed that complex formation at two different pH values could occur through a remarkable static quenching. According to fluorescence quenching, one set of binding site at pH 2 and two sets of binding sites at pH 7 were introduced for binding of retinol to β-LG that show the enhancement of saturation score of β-LG to retinol in dimmer condition. The polarization fluorescence analysis represented that there is more affinity between β-LG and retinol at pH 7 rather than at pH 2. The effect of retinol on β-LG was studied by UV-visible, circular dichroism (CD), and synchronous fluorescence, which indicated that retinol induced more structural changes on β-LG at pH 7. β-LG–retinol complex formation at two different pH values was recorded via applying resonance light scattering (RLS) and zeta potential. Conductometry and RLS showed two different behaviors of interaction between β-LG and retinol at two different pH values; therefore, dimmer formation played important roles in different behaviors of interaction between β-LG and retinol. The zeta potential was the implied combination of electrostatic and hydrophobic forces which are involved in β-LG–retinol complex at two different pH values, and the hydrophobic interactions play a dominant role in complex formation. Molecular modeling was approved by all experimental results. The acquired results suggested that monomer and dimmer states of β-LG can be induced by retinol with different behaviors.  相似文献   

8.
Protein sequences can be represented as binary patterns of polar (○) and nonpolar (?) amino acids. These binary sequence patterns are categorized into two classes: Class A patterns match the structural repeat of an idealized amphiphilic α-helix (3.6 residues per turn), and class B patterns match the structural repeat of an idealized amphiphilic β-strand (2 residues per turn). The difference between these two classes of sequence patterns has led to a strategy for de novo protein design based on binary patterning of polar and nonpolar amino acids. Here we ask whether similar binary patterning is incorporated in the sequences and structures of natural proteins. Analysis of the Protein Data Bank demonstrates the following. (1) Class A sequence patterns occur considerably more frequently in the sequences of natural proteins than would be expected at random, but class B patterns occur less often than expected. (2) Each pattern is found predominantly in the secondary structure expected from the binary strategy for protein design. Thus, class A patterns are found more frequently in α-helices than in β-strands, and class B patterns are found more frequently in β-strands than in α-helices. (3) Among the α-helices of natural proteins, the most commonly used binary patterns are indeed the class A patterns. (4) Among all β-strands in the database, the most commonly used binary patterns are not the expected class B patterns. (5) However, for solvent-exposed β-strands, the correlation is striking: All β-strands in the database that contain the class B patterns are exposed to solvent. (6) The bias of class A patterns for α-structure over β-structure and the bias of class B patterns for β-structure over α-structure are significant, not merely when compared to other binary patterns of polar (○) and nonpolar (?) amino acids, but also when compared to the full range of sequences in the database. The implications for the design of novel proteins are discussed.  相似文献   

9.
Infrared spectra of 2.5 mM solutions of β-lactoglobulin B were recorded as a function of pH (from pH 2 to pH 13) and as a function of temperature (from −100°C to +90°C). An analysis of the pH- and temperature-induced changes in the secondary structures was performed based on changes in the conformation-sensitive amide I bands of β-lactoglobulin. Whereas the total of β-structure remains constant (56–59%) between pH22 and pH 10, the proportions of the various β-components do change. In particular, the dimerization of the monomeric protein, induced by raising the pH from 20 to 3, leads to an increase in the intensity of the 1636 cm−1 band (associated with antiparallel β-sheet), at the expense of the 1626 cm−1 band (associated with exposed β-strands). Both the thermal and alkaline denaturation of β-lactoglobulin occur in two distinct stages. Although the spectra (i.e., the structures) after complete thermal or alkaline denaturation are clearly different, the spectrum of the protein after the first stage of thermal denaturation (at about 60°C) is the same as that after the first stage of alkaline denaturation (at pH 11), suggesting a common denaturation intermediate, which probably represents a crossover point in a complex potential hypersurface.  相似文献   

10.
Abstract

Vinblastine (VLB) and its derivatives have been used for clinical first-line drugs to treat various cancers. Due to the resistance and serious side effects from using VLB and its derivatives, there is a need to discover and develop novel VLB derivatives with high activity against cancer cells. In order to better discover and develop new VLB derivatives, we need to study the structural basis of VLB's anti-cancer cytotoxicity and the mechanism of its interaction with α,β-tubulins. Based on the crystal structure of α,β-microtubule complex protein, the molecular dynamics method including the sampling PMF method was used to study the variation of dissociation free energy (ΔG) of α,β-tubulins under different system conditions, and then from which to study the mechanism of the interaction between VLB and α,β-tubulins. The obtained results show that the dissociation of pure α,β-tubulins requires 197.8?kJ·mol?1 for ΔG. When the VLB molecule exists between the interface of α,β-tubulins, the dissociation ΔG of α,β-tubulins reaches 220.5?kJ·mol?1, which is greater than that of pure α,β-tubulin. The VLB molecule is formed by connecting a vindoline moiety (VM) molecule with a catharanthine moiety (CM) molecule through a carbon-carbon bond, which is a larger molecule. When the CM molecule exists in the middle of α,β-tubulin interface, the dissociation ΔG of α,β-tubulins is 46.2?kJ·mol?1, during which the CM moves with β-tubulin. When the VM molecule exists between the middle of α,β-tubulin interface, the dissociation ΔG of α,β-tubulins is 86.7?kJ·mol?1, during which it moves with α-tubulin. Therefore, the VLB molecule is like a double-sides tape to stick α-tubulin and β-tubulin together. The VLB molecule intervenes the dynamic equilibrium between dissociation and aggregation of α-tubulin and β-tubulin by a double-sides sticking mechanism to exert high activity with toxicity against cancer cell. Besides, our results demonstrate that VLB has its structural basis for anticancer cytotoxicity due to its two compositions composed of a CM molecule and a VM molecule although they have little toxicity against cancer cell alone.  相似文献   

11.
Alloform-specific differences in structural dynamics between amyloid β-protein (Aβ) 40 and Aβ42 appear to underlie the pathogenesis of Alzheimer's disease. To elucidate these differences, we performed microsecond timescale replica-exchange molecular dynamics simulations to sample the conformational space of the Aβ monomer and constructed its free-energy surface. We find that neither peptide monomer is unstructured, but rather that each may be described as a unique statistical coil in which five relatively independent folding units exist, comprising residues 1-5, 10-13, 17-22, 28-37, and 39-42, which are connected by four turn structures. The free-energy surfaces of both peptides are characterized by two large basins, comprising conformers with either substantial α-helix or β-sheet content. Conformational transitions within and between these basins are rapid. The two additional hydrophobic residues at the Aβ42 C-terminus, Ile41 and Ala42, significantly increase contacts within the C-terminus, and between the C-terminus and the central hydrophobic cluster (Leu17-Ala21). As a result, the β-structure of Aβ42 is more stable than that of Aβ40, and the conformational equilibrium in Aβ42 shifts towards β-structure. These results suggest that drugs stabilizing α-helical Aβ conformers (or destabilizing the β-sheet state) would block formation of neurotoxic oligomers. The atomic-resolution conformer structures determined in our simulations may serve as useful targets for this purpose. The conformers also provide starting points for simulations of Aβ oligomerization—a process postulated to be the key pathogenetic event in Alzheimer's disease.  相似文献   

12.
β-Lactoglobulin forms a soluble complex with cytochrome c in mildly alkaline solutions of low ionic strength. Sedimentation velocity experiments suggest that the complex (maximum s20 = 3.7) consists of one cytochrome c molecule per β-lactoglobulin monomer unit. At pH 8 or higher, the presence of β-lactoglobulin causes reduction of ferri- to ferrocytochrome c. The initial rate of reduction at a single temperature depends primarily on the concentration of β-lactoglobulin, although the final percentage ferrocytochrome c obtained is constant at molar ratios of three or more β-lactoglobulin monomers to one cytochrome c molecule. The temperature dependence of the initial rate of iron reduction resembles that for alkaline denaturation of β-lactoglobulin. The displacement of N-dansylaziridine, a sulfhydryl specific dye, from bovine β-lactoglobulin during iron reduction, and the formation of nonreducing complexes between the analogous swine protein (no sulfhydryls) and cytochrome c suggest that the sulfhydryl group of β-lactoglobulin is the electron donor.  相似文献   

13.
D Pederson  D Gabriel  J Hermans 《Biopolymers》1971,10(11):2133-2145
We have performed potentiometric titrations of poly-L -lysine. From these data we have calculated the free energy and enthalpy changes for the folding of the random coil to the α-helix in 10% ethanol (?120 and ?120 cal/mole) and from the random coil to the β-structure in water (?140 and 870 cal/mole) and in 10% ethanol (?180 and 980 cal mole). Comparison of these values with each other and with values for the coil → α- helix transition in water (?78 and ?880 cal/mole) led to the following conclusions. The stabilization by ethanol of ethanol of the α-helix with respect to the coil is that predicted from the known free energy of transfer of the peptide group from water to 10% ethanol. Similar data to explain the enthalpy difference are not available. The thermodynamic functions for the transition from α-helix to β-structure, obtained by subtracting those for the coil → α-helix and coil → β-structure transitions, are explained from a consideration of the structural differences: non bonded interactions of the polypeptide backbone are less favorable in the β-structure than in the α-helix, causing an increase in the energy, while hydrophobic contacts between side chains raise the entropy of the β-structure as compared with the α-helix, so that the free energy difference between the two structures is small, but enthalpy and entropy differences are large. The observation of only small differences in the free energy and enthalpy changes for the transition from coil β-structure upon going from water to 10% ethanol is expected by considering both the free energy of transfer of the peptide group (as for the α-helix) and the free energy and enthalpy of transfer of the apolar part of the side chain involved in hydrophobic bond formation.  相似文献   

14.
The interactions of fatty acids with porcine and bovine β-lactoglobulins were measured using tryptophan fluorescence enhancement. In the case of bovine β-lactoglobulin, the apparent binding constants for most of the saturated and unsaturated fatty acids were in the range of 10?7 M at neutralpH. Bovine β-lactoglobulin displays only one high affinity binding site for palmitate with an apparent dissociation constant of 1·10?7 M. The strength of the binding was decreasing in the following way: palmitate > stearate > myristate > arachidate > laurate. Caprylic and capric acids are not bound at all. The affinity of β-lactoglobulin for palmitate decreased as thepH of the incubation medium was lowered and BLG/palmitate complex was not observed atpH's lower than 4.5. Surprisingly, chemically modified bovine β-lactoglobulin and porcine β-lactoglobulin did not bind fatty acids in the applied conditions.  相似文献   

15.
Infrared spectroscopy of human amyloid fibrils and immunoglobulin proteins   总被引:3,自引:0,他引:3  
The presence of the antiparallel-β-pleated sheet coformation io isolated human amyloid protein fibrils has been confirmed by infrared spectroscopy. In most amyloid samples, this conformation was enhanced by acidic solution conditions. Infrared spectroscopy (Amide I and Amide V absorption bands) and x-ray diffraction methods were also used to examine the immunoglobulin molecule for solid state-β-structure. It was found that both heavy chains and Bence Jones proteins exhibited some β-pleated sheet content upon acid and/or heat treatment. Furthermore, pepsin digests comprising either the variable-rich region (Fd′) of the immunloglobulin heavy chain or in particular, filamentous variable segments of κ and λ Bence Jones proteins were, as isolated, very similar to amyloid in β-structure content. Data from other immunoglobulin-derived sample did not exhibit extensive β-pleated sheet content. On the other hand, most amyliod and immunoglobulin-derived samples did display some β-structure when cast from 50% HCOOH solution. Under these conditions, however, filamentous light chain-variable segments exhibited well-defined infrared patterns rich in antiparallel-β-pleated sheet structure and gave a “cross-β” x-ray diffraction pattern.  相似文献   

16.
The effects of whey proteins from bovine milk on melanogenesis in cultured human melanocytes were examined. Among the major protein components of milk whey including β-lactoglobulin (BLG), α-lactalbumin, serum albumin, and IgG, only BLG exhibited the depigmenting effect at a concentration of 1 mg/ml. Also, BLG suppressed the activity of tyrosinase in these cells. Retinol, to which BLG is known to bind, slightly increased the pigmentation of the cells at concentrations in the range of 1–100 nM, and retinoic acid, a metabolite of retinol, exhibited a strong pigmentation-promoting effect within the same concentration range. Treatment of the cells with 1 mg/ml BLG completely abrogated the pigmentation induced by these A vitamins. These results demonstrate a novel biological activity of BLG and suggest that this activity is dependent on its ability to bind retinol.  相似文献   

17.
Conversion between the intermolecular β-structure and the disordered state of a fractionated low molecular weight sample of poly(S-carboxyniethyl-L-cysteine) was examined mainly by the measurements of circular dichroism in the absence of salt as well as in the presence of 20 mM NaClO4, or NaCl. In 20 mM NaClO4 or NaCl solutions, the conversion was reversible. Under this condition, it was confirmed by direct and unambiguous evidence provided from the viscosity and the reduced scattering intensity that the β-structure was formed by intermolecular association. At low degrees of neutralization, the pH increased on dilution while it remained constant over a wide range of concentration at a high degree of neutralization. In the absence of salt, the conversion was often irreversible with respect to a concentration change at a constant degree of neutralization or to a change in the degree of neutralization at a constant concentration. The extent of the irreversible conversion decreased with the amount of β-structure in the solution. The dissociation of aggregates was very slow at low ionic strengths. It was inferred that the irreversible nature of the conversion arose from this slow dissociation of aggregates.  相似文献   

18.
Soluble guanylate cyclase (sGC) mediates NO signaling for a wide range of physiological effects in the cardiovascular system and the central nervous system. The α1β1 isoform is ubiquitously distributed in cytosolic fractions of tissues, whereas α2β1 is mainly found in the brain. The major occurrence and the unique characteristic of human sGC α2β1 indicate a special role in the mediation of neuronal communication. We have efficiently purified and characterized the recombinant heme-binding domain of the human sGC α2 subunit (hsGC α2(H)) and heterodimeric α2β1 (hsGC β1(H)-α2(H)) by UV-vis spectroscopy, circular dichrosim spectroscopy, EPR spectroscopy, and homology modeling. The heme dissociation and related NO/CO binding/dissociation of both hsGC α2(H) and hsGC β1(H)-α2(H) were investigated. The two truncated proteins interact with heme noncovalently. The CO binding affinity of hsGC α2(H) is threefold greater than that of human sGC α1(H), whereas the dissociation constant k (1) for dissociation of NO from hsGC α2(H) is sevenfold larger than that for dissociation of NO from hsGC α1(H), although k (2) is almost identical. The results indicate that in comparison with the α1β1 isoform, the brain α2β1 isoform exhibits a distinctly different CO/NO affinity and binding rate in favor of NO signaling, and this is consistent with its physiological role in the activation and desensitization. Molecular modeling and sequence alignments are consistent with the hypothesis that His105 contributes to the different CO/NO binding properties of different isoforms. This valuable information is helpful to understand the molecular mechanism by which human sGC α2β1 mediates NO/CO signaling.  相似文献   

19.
The relative proportions of α-helix, β-sheet, and unordered form in β-lactoglobulin A and B were examined in solutions of urea, guanidine, and sodium dodecyl sulfate (SDS). In the curve-fitting method of circular dichroism (CD) spectra, the reference spectra of the corresponding structures determined by Chen et al. (1974) were modified essentially according to the secondary structure of β-lactoglobulin B predicted by Creamer et al. (1983), i.e., that the protein has 17% α-helix and 41% β-sheet. The two variants showed no appreciable difference in structural changes. The reduction of disulfide bridges in the proteins increased β-sheet up to 48% but did not affect the α-helical proportion. The α-helical proportions of nonreduced β-lactoglobulin A and B were not affected below 2 M guanidine or below 3 M urea, but those of the reduced proteins began to decrease in much lower concentrations of these denaturants. By contrast, the α-helical proportions of the nonreduced and reduced proteins increased to 40–44% in SDS. The β-sheet proportions of both nonreduced and reduced proteins, which remained unaffected even in 6 M guanidine and 9 M urea, decreased to 24–25% in SDS.  相似文献   

20.
Heterodimeric integrin adhesion receptors regulate cell migration, survival and differentiation in metazoa by communicating signals bi‐directionally across the plasma membrane. Protein engineering and mutagenesis studies have suggested that the dissociation of a complex formed by the single‐pass transmembrane (TM) segments of the α and β subunits is central to these signalling events. Here, we report the structure of the integrin αIIbβ3 TM complex, structure‐based site‐directed mutagenesis and lipid embedding estimates to reveal the structural event that underlies the transition from associated to dissociated states, that is, TM signalling. The complex is stabilized by glycine‐packing mediated TM helix crossing within the extracellular membrane leaflet, and by unique hydrophobic and electrostatic bridges in the intracellular leaflet that mediate an unusual, asymmetric association of the 24‐ and 29‐residue αIIb and β3 TM helices. The structurally unique, highly conserved integrin αIIbβ3 TM complex rationalizes bi‐directional signalling and represents the first structure of a heterodimeric TM receptor complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号