首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
A simplified kinetic model scheme is presented that addresses the main reactions of two recently reported peptide self-replicators. Experimentally observed differences in the autocatalytic efficiency between these two systems-- caused by variations in the peptide sequences--and the possible effect of chiral amplification under heterochiral reaction conditions were evaluated. Our numerical simulations indicated that differences in the catalytic performance are exclusively due to pronounced variations in the rate parameters that control the reversible and hydrophobic interactions in the reaction system but neither to alterations in the underlying reaction network nor to changes in the stoichiometry of the involved aggregation processes. Model predictions further demonstrated the possible existence of chiral amplification if peptide self-replication is performed under heterochiral reaction conditions. Pointing into the direction of a possible cause for biomolecular homochirality, it was found that in open flow reactors, keeping the system under non-equilibrium conditions, a remarkable amplification of enantiomeric excess could be achieved. According to our modeling, this is due to a chiroselective autocatalytic effect and a meso-type separation process both of which are assumed to be intrinsic for the underlying dynamics of heterochiral peptide self-replication.  相似文献   

2.
Chiral symmetry breaking can be realized in stirred crystallization of Na-ClO3. We present experimental and theoretical studies of the random distribution of crystal enantiomeric excess (cee) for various stirring and solvent evaporation rates. For a fixed solvent evaporation rate, as the stirring RPM is increased, the probability distribution of cee initially broadens and subsequently develops a sharp peak close to cee = 1. On further increase of stirring rate, the probability distribution once again broadens. This broad probability distribution becomes narrow, with a sharp peak near cee = 1, if the solvent evaporation rate is decreased. Thus we show some ways in which the probability distribution of cee can be controlled in stirred crystallization. In particular, our study shows that the stirring rate and the solvent evaporation rate can be adjusted to maximize crystal enantiomeric excess. © 1995 Wiley-Liss, Inc.  相似文献   

3.
The treatment of the terpene β(−)pinene with γ radiation (at dose level: 150, 300 and 600 kGy) causes its polymerization into a resin and into a dimer. The yield of the resin and of the dimer appears to be linearly dependent to the radiation dose. The structure of the products was studied by FT–IR spectroscopy also in comparison to a reference β(−)pinene resin prepared by cationic polymerization. A highly ordered structure was found in the case of the radiopolymer in comparison to the resin from cationic polymerization. Polarimetric measurements have shown astonishing enhancement in the optical activity of the radiopolymer and radiodimer in comparison to the starting optical activity of the β(−)pinene monomer. Also DSC (differential scanning calorimetry) data supports the unexpected highly ordered structure for the β(−)pinene radiopolymer in comparison to the resin prepared by cationic polymerization. The results have been discussed in terms of amplification of chirality caused by γ radiation and the implications of this fact on the mechanism of chiral amplification on prebiotic molecules. Presented at: National Workshop on Astrobiology: Search for Life in the Solar System, Capri, Italy, 26 to 28 October, 2005.  相似文献   

4.
Practical chiroptical sensing with a small group of commercially available aromatic aldehydes is demonstrated. Schiff base formation between the electron-deficient 2,4-dinitrobenzaldehyde probe and either primary amines, diamines, or amino alcohols proceeds smoothly in chloroform at room temperature and is completed in the presence of molecular sieves within 2.5 hours. The substrate binding coincides with a distinct circular dichroism signal induction at approximately 330 nm, which can be correlated to the absolute configuration and enantiomeric composition of the analyte. The usefulness of this sensing method is highlighted with the successful sensing of 18 aliphatic and aromatic amines and amino alcohols and five examples showing quantitative %ee determination with good accuracy.  相似文献   

5.
Summary The aminoacylation of diinosine monophosphate (IpI) was studied. When the acylating agent was the imidazolide of N-(tert-butoxycarbonyl)-Dl-alanine, a 40% enantiomeric excess of thel isomer was incorporated at the internal 2 site and the positions of equilibrium for the 23 migration reaction differed for theD andl enantiomers. The reactivity of the nucleoside hydroxyl groups decreased in the order 2(3)>internal 2>5, and the extent of reaction was affected by the concentration of the imidazole buffer (pH 7.1). In contrast, reaction of IpI with the imidazolide of unprotectedDl-alanine led to an excess of theD isomer at the internal 2 site, while reaction with the N-carboxy anhydride ofDl-alanine proceeded without detectable stereoselection. The relevance of these results to the evolution of optical activity and the origin of genetically directed protein synthesis is discussed.  相似文献   

6.
Summary The spontaneous swimming activity and oxygen consumption of juvenile roach (Rutilus rutilus (L.)), were monitored for 48–72 h at 8, 15 and 20°C and a photoperiod (L:D) of 11:13. At low levels of activity metabolic cost is constant and thus corresponds to the standard rate of metabolism (low cost activity). At higher levels of activity metabolic cost increases in proportion with the degree of activity. The slope for this high cost activity indicates an expenditure of 0.4–1.3 mol O2·g-1·h-1 per arbitrary activity unit at the three experimental temperatures. Extrapolation of this relationship to zero activity would underestimate the measured standard metabolic rate. High cost activity occurred in only one experiment out of three at 8°C, low cost activity hardly at all at 20°C, whereas at 15°C both forms of activity were present in five of the seven experiments conducted. Thus, not only the intensity but also the pattern of activity is affected by environmental temperature.  相似文献   

7.
The human soluble epoxide hydrolase (hsEH) is a key regulator of epoxy fatty acid (EpFA) metabolism. Inhibition of sEH can maintain endogenous levels of beneficial EpFAs and reduce the levels of their corresponding diol products, thus ameliorating a variety of pathological conditions including cardiovascular, central nervous system and metabolic diseases. The quest for orthosteric drugs that bind directly to the catalytic crevice of hsEH has been prolonged and sustained over the past decades, but the disappointing outcome of clinical trials to date warrants alternative pharmacological approaches. Previously, we have shown that hsEH can be allosterically inhibited by the endogenous electrophilic lipid 15-deoxy-Δ12,14-Prostaglandin-J2, via covalent adduction to two cysteines, C423 and C522. In this study, we explore the properties and behaviour of three electrophilic lipids belonging to the class of the nitro fatty acids, namely 9- and 10-nitrooleate and 10-nitrolinoleate. Biochemical and biophysical investigations revealed that, in addition to C423 and C522, nitro fatty acids can covalently bind to additional nucleophilic residues in hsEH C-terminal domain (CTD), two of which predicted in this study to be latent allosteric sites. Systematic mapping of the protein mutational space and evaluation of possible propagation pathways delineated selected residues, both in the allosteric patches and in other regions of the enzyme, envisaged to play a role in allosteric signalling. The responses elicited by the ligands on the covalent adduction sites supports future fragment-based design studies of new allosteric effectors for hsEH with increased efficacy and selectivity.  相似文献   

8.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号