首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to evaluate the role of protein synthesis in apoptosis, 13C-NMR has been used to study the levels of protein synthesis in three different human leukemic cell lines in the presence and absence of dexamethasone-induced apoptosis. Measurements were done on one dexamethasone-sensitive (CEM-C7-14) and two different dexamethasone-resistant variants (CEM-4R4 and CEM-ICR27-4). The incorporation of 13C-labeled amino acids into cellular proteins, which reflects the level of new protein synthesis, was monitored by 13C-NMR spectroscopy. In the absence of dexamethasone, the level of protein synthesis was found to be significantly different among the three cell lines. Dexamethasone caused a significant reduction (≅60–87%) in the level of protein synthesis in dexamethasone-sensitive CEM-C7-14 cells, while having no significant effect on protein synthesis in dexamethasone-resistant CEM-4R4 cells. Dexamethasone treatment caused a significant enhancement of the level of protein synthesis in the CEM-ICR27-4 cells. Synthesis of proteins was found to occur during apoptosis, albeit at a low level, suggesting a role for the synthesis of specific proteins in the mechanism of apoptosis. J. Cell. Physiol. 181:147–152, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

2.
The levels of intracellular free Ca(II) and Zn(II) during dexamethasone (dex)-induced apoptosis in CEM cell lines were determined by 19F nuclear magnetic resonance (NMR), using the fluorinated intracellular chelator 1,2-bis-(2-amino-5-fluorophenoxy)ethane-N, N, N′, N′-tetraacetic acid (5-FBAPTA). The effects of these divalent metal ions on growth rate and DNA degradation were evaluated. Measurements were done on one dex-sensitive (CEM-C7) and three different dex-resistant variants (CEM-C1, CEM-4R4, and CEM-ICR27). Dex caused a continuous increase in the Ca(II) level in dex-sensitive CEM-C7 cells, while in CEM-C1 cells dex caused an initial increase in the Ca(II) level which in ≈?36 h was restored to its normal value. The intracellular Ca(II) level in CEM-4R4 cells was not significantly affected by dex, while that of CEM-ICR27 cells decreased after dex incubation. Only the dex-sensitive CEM-C7 cells showed dex-induced DNA degradation. An intracellular free Zn(II) level of ≈?1 nM was measured for the dex-resistant CEM-C1 cells. No detectable level of intracellular Zn(II) was found in the other cell lines. Incubation with <100 μM Zn(II) did not inhibit dex-induced apoptosis in CEM-C7 cells (e.g., DNA degradation). Treatment with ≈?250 μM Zn(II) caused significant decrease in growth rate in all cell lines and prevented dex-induced DNA degradation in CEM-C7 cells. A calibrated amount of Ca(II) ionophore (A23187), used to increase Ca(II) concentrations up to the dex-induced levels, did not induce DNA degradation in CEM-C7 or CEM-C1 cells. While elevation of intracellular Ca(II) by itself is not sufficient to initiate apoptosis in CEM-C7 cells, the results reported here suggest that Ca(II) is involved in the killing mechanism as a secondary factor. The combination of dex and ionophore caused significant DNA degradation in CEM-C1 cells, which normally showed resistance to each compound individually. The combination of dex and the Zn(II) chelator phenanthroline also caused extensive DNA degradation in the normally dex-resistant CEM-C1 cells, suggesting that Zn(II) plays a role in the dex resistance of these cells. © 1995 Wiley-Liss, Inc.  相似文献   

3.
31P NMR has been used to study the effects of dexamethasone on phosphorus metabolism in one dexamethasone (dex)-sensitive (CEM-C7) and three different dex-resistant (CEM-C1, CEM-4R4, and CEM-ICR27) human leukemic cell lines. The use of these cell lines, containing widely varying amounts of glucocorticoid receptors, made it possible to evaluate the receptor-mediated contributions to the modes of action of dexamethasone in these cells. To evaluate the effects of dexamethasone without any significant contribution from experimental conditions, all the experiments were done with parallel controls. Results obtained showed: (1) significantly different levels of phosphorylethanolamine (PE) and phosphorylcholine (PC) among cell lines, suggesting significant differences in phospholipid metabolism; (2) the dexamethasone induced reduction of phosphomonoester (PE + PC), ATP, and metabolic rates probably through glucocorticoid receptor mediated mechanisms; (3) the dexamethasone induced stimulation of cellular metabolism in a process which seems to be independent of glucocorticoid receptors; and (4) the dexamethasone induced alkaline shift of intracellular pH in all the cell lines except ICR27. The reduction in PME levels seems to be an earlier step in dexamethasone-induced apoptosis than the reduction in ATP. The degree of alkaline shift was found to correlate with the number of glucocorticoid receptors present. The possible involvement of phospholipid metabolites as second messengers in dexamethasone-induced apoptosis is discussed. © 1994 Wiley-Liss, Inc.  相似文献   

4.
Summary CEM-C7, a human leukemic CD4+ T-lymphocyte cell line and three of its subclones, CEM-4R4, CEM-3R43, and ICR-27, previously cultured in a medium supplemented with 5 to 10% fetal bovine serum, have been adapted to serum-free media. The best medium of those tested was RPMI 1640 supplemented with 5 μg/ml each transferrin and insulin + 5 ng/ml sodium selinite ± 0.1% bovine serum albumin. While growing either with or without albumin, the several clonal lines of CEM cells displayed growth similar to serum-supplemented cultures. Cell proliferation of CEM-C7 cells cultured in both serum-free media has been sustained for 3 mo, with culture doubling times of about 25 h for both serum-supplemented and serum-free cultures (viability ≥ 90%). Cell morphology remained essentially the same in serum-free or serum containing media. The expression of CD4, a marker for T-derived lymphoid cells, was not significantly different in serum-free medium. When grown in serum-free medium, CEM-C7 cells exhibited increased steroid responsiveness as evidenced by increased glucocorticoid receptor binding sites, increased induction of glutamine synthetase, and cell lysis at lower concentrations of steroid. Receptor mutant subclones of CEM-C7, which are proven to be completely unresponsive to micromolar concentrations of dexamethasone when grown in serum-supplemented medium, become partially sensitive to the hormone after growth in defined medium. The increased sensitivity of CEM-C7 cells and its subclones to dexamethasone in serum-free medium returned to previous levels when these cells were recultured in serum-containing medium. Our results suggest that substances in serum influence steroid effects on these cells and that the molecular details of glucocorticoid hormone action may be pursued more precisely in a clearly defined culture medium. This work was conducted in conjunction with the Walls Medical Research Foundation.  相似文献   

5.
Glucocorticoids can mediate the destruction of thymocytes and T cell-derived leukemia cells through a mechanism known as apoptosis. The characteristic feature of apoptosis is fragmentation of DNA at internucleosomal linkers through the activity of a specific endonuclease. In this study, an attempt was made to compare dexamethasone-induced apoptosis in two T cell-derived human leukemia lines (CEM-C1 and CEM-C7) to the cell killing brought about by selected cytotoxic agents. In the CEM-C7 cell line (dexamethasone-sensitive), apoptosis was induced not only by dexamethasone but by actinomycin D, cycloheximide, and 25-OH cholesterol. In the CEM-C1 cell line (dexamethasone-resistant) cycloheximide, 25-OH cholesterol, or cell starvation could induce apoptosis. It appears that in leukemic cells apoptosis may be induced by a variety of unrelated toxic agents and is not limited to glucocorticoids.  相似文献   

6.
We have examined glucocorticoid effects on CEM-C7 and CEM-C1 subclones of a leukemic human T-cell line using fluorescence photobleaching recovery techniques. Incubation with 10(-5) M triamcinolone acetonide (TA) increased lipid lateral diffusion on steroid-sensitive CEM-C7 cells but had no effect on steroid-resistant CEM-C1 cells. CEM-C7 cells incubated in serum-free medium responded only to TA but, when fetal calf serum was added to the incubation medium, would also respond to 10(-5) M dexamethasone and hydrocortisone. Thus, glucocorticoids can cause increased lipid lateral diffusion in CEM-C7 cells, while having no effect on steroid-resistant CEM-C1 cells.  相似文献   

7.
8.
4-Hydroxynonenal (HNE), a reactive and cytotoxic end-product of lipid peroxidation, has been suggested to be a key mediator of oxidative stress-induced cell death and in various cell types has been shown to induce apoptosis. We have demonstrated that HNE, at micromolar concentrations, induces dose- and time-dependent apoptosis in a leukemic cell line (CEM-C7). Interestingly, much higher concentrations of HNE (> 15-fold) were required to induce apoptosis in leukocytes obtained from normal individuals. We also demonstrate that HNE causes a decrease in clonogenicity of CEM-C7 cells. Furthermore, our data characterize the caspase cascade involved in HNE-induced apoptosis in CEM-C7 cells. Using specific fluorogenic substrates and irreversible peptide inhibitors, we demonstrate that caspase 2, caspase 3, and caspase 8 are involved in HNE-induced apoptosis, and that caspase 2 is the first initiator caspase that activates the executioner caspase 3, either directly or via activation of caspase 8. Our studies also suggest the involvement of another executioner caspase, which appears to be similar to caspase 8 but not caspases 2 and 3, in its specificity. The demonstration of decreased clonogenicity by HNE in the leukemic cells, and their higher susceptibility to HNE-induced apoptosis as compared to the normal cells, suggests that such compounds may have potential for leukemia chemotherapy.  相似文献   

9.
10.
11.
We have studied the growth effects of conditioned media, interleukin-2 and PGE prostaglandin analogs on the glucocorticoid-sensitive human leukemic T-cell clone, CEM-C7. After 4 days, the glucocorticoid dexamethasone at approximately 10 nM kills 50% of CEM-C7 cells. To test the hypothesis that glucocorticoid-mediated lymphocytolysis was due to suppression of lymphokine expression only, we attempted to protect CEM-C7 cells from lysis by provision of lymphokine(s). Conditioned media from interleukin-2 secreting Jurkat T-cells as well as the glucocorticoid-insensitive, but receptor positive clone, CEM-C1, failed to prevent lymphocytolysis; exogenous interleukin-2 also did not provide protection. There were complex, biphasic interactions between dexamethasone and the synthetic PGEs, enisoprost and enisoprost free acid. Low doses of enisoprost alone (0.01 to 1 microgram/ml) stimulated growth, and in combinations completely reversed the growth inhibitory effects of 10 nM dexamethasone. Higher concentrations of enisoprost were inherently lethal and were additive to the steroid effect. Thus the glucocorticoid-induced lymphocytolysis in this human leukemic T-cell line may be modified biphasically by PGE prostaglandins, depending on their concentration. However, interleukin-2 or components in the conditioned media assayed had no effect in ameliorating the lethal response to glucocorticoid.  相似文献   

12.
13.
The role of calcium influx in dexamethasone-induced fragmentation of DNA was studied in the glucocorticoid-sensitive human lymphoid line of T cell derivation (CEM-C7). Reduction of calcium content in the medium or the use of EGTA increased DNA fragmentation and appeared to slightly enhance the effect of dexamethasone. Incubation of isolated nuclei in the presence of high concentrations of calcium did not bring about significant DNA fragmentation. Calmidazolium, an antagonist of calmodulin dependent reactions did not reduce the sensitivity of CEM-C7 cells to dexamethasone nor did it modify the response to dexamethasone of the resistant CEM-C1 line. It appears that in contrast to rodent thymocytes, massive calcium influx is not per se responsible for the initiation of directed cell killing (apoptosis).  相似文献   

14.
Apoptosis is defined by specific morphological and biochemical characteristics including cell shrinkage (termed apoptotic volume decrease), a process that results from the regulation of ion channels and plasma membrane transporter activity. The Na+–K+-ATPase is the predominant pump that controls cell volume and plasma membrane potential in cells and alterations in its function have been suggested to be associated with apoptosis. We report here that the Na+–K+-ATPase inhibitor ouabain, potentiates apoptosis in the human lymphoma Jurkat cells exposed to Fas ligand (FasL) or tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) but not other apoptotic agents such as H2O2, thapsigargin or UV-C implicating a role for the Na+–K+-ATPase in death receptor-induced apoptosis. Interestingly, ouabain also potentiated perturbations in cell Ca2+ homeostasis only in conjunction with the apoptotic inducer FasL but not TRAIL. Ouabain did not affect alterations in the intracellular Ca2+ levels in response to H2O2, thapsigargin or UV-C. FasL-induced alterations in Ca2+ were not abolished in Ca2+-free medium but incubation of cells with BAPTA-AM inhibited both Ca2+ perturbations and the ouabain-induced potentiation of FasL-induced apoptosis. Our data suggest that the impairment of the Na+–K+-ATPase activity during apoptosis is linked to perturbations in cell Ca2+ homeostasis that modulate apoptosis induced by the activation of Fas by FasL.  相似文献   

15.
In thymocytes butyrate and trichostatin A are unable to augment dexamethasone-induced apoptosis. In cultured rat thymocytes the extent of apoptosis induced by dexamethasone alone did not increase by addition of 0.1 - 10 mM butyrate. Even more pronounced was the non-additive interrelationship between dexamethasone and trichostatin A, as trichostatin A-induced apoptosis was not only blocked by the presence of dexamethasone but dexamethasone-induced apoptosis was also partially inhibited in the presence of 0.1 - 0.5 microM trichostatin A. The fact that the non-additive relationship with dexamethasone for apoptosis induction was observed with both histone deacetylase inhibitors suggests that in thymocytes this phenomenon is related to histone acetylation. In contrast to this, in the human T cell-derived leukemia cell line CEM-C7H2, dexamethasone did not block butyrate- or trichostatin A-induced apoptosis; moreover, butyrate, in the concentration range of 0.1 - 1 mM, had a marked synergistic effect on dexamethasone-induced apoptosis. This synergism, however, was not mimicked by trichostatin A, indicating that the effect is not related to histone acetylation but rather due to a pleiotropic effect of butyrate. Furthermore, in CEM-C7H2 cells, at higher concentrations of butyrate (5 - 10 mM) or trichostatin A (0.4 - 0.8 microM), there was a minor but reproducible antagonistic effect of dexamethasone on apoptosis induced by each of the two histone deacetylase inhibitors, suggesting that this antagonistic effect too, is related to histone hyperacetylation.  相似文献   

16.
Diarylheptanoids, isolated from the rhizome of Curcuma comosa Roxb., have several biological activities including anti-oxidant and anti-inflammation. The present study investigated the effect of five diarylheptanoids isolated from C. comosa rhizome on the proliferation of murine P388 leukemic cells. Compound-092, (3S)-1-(3,4-dihydroxyphenyl)-7-phenyl-(6E)-6-hepten-3-ol, bearing a catechol moiety, was the most potent diarylheptanoid (IC50 of 4 μM) in inhibiting P388 leukemic cell viability by causing DNA breakage and inducing apoptosis. Apoptotic cell death was characterized by the presence of chromatin condensation, formation of apoptotic bodies, DNA fragmentation, and externalization of plasma membrane phosphatidylserine. This compound increased caspase-3 activity about fivefold above the untreated control, decreased the intracellular reduced glutathione level, and impaired mitochondrial transmembrane potential. In the presence of Cu(II) ion, the compound exhibited a pro-oxidant activity causing DNA strand breakage and enhancing the anti-proliferative activity. The results provide evidence for the pro-oxidant activity of the diarylheptanoid bearing a catechol moiety in the induction of apoptosis in murine P388 leukemia.  相似文献   

17.
18.
Functional screening of a human bone marrow cDNA library for suppressors of CD95-mediated apoptosis has led to the identification of a 326 bp fragment (Je2), which not only suppresses CD95-induced apoptosis in Jurkat T-cells, but maps to 3p21.3, to an intronic region of the candidate TSG LUCA-15 locus. Here we report that overexpression of Je2 in CEM-C7 T-cell line is able to suppress CD95-mediated apoptosis, and apoptosis induced by TNF and the glucocorticoid analogue dexamethasone, but was not able to suppress death induced by the topoisomerase II inhibitor etoposide. Je2 inhibition of apoptosis is also associated with a change in the pattern of expression of LUCA-15-encoded proteins. Je2 might therefore function to inhibit apoptosis by destabilising message expression of LUCA-15 and promoting the degradation of its RNA and protein. This suppression of apoptosis by Je2 also appears to be associated with up-regulation of the apoptosis inhibitory protein Bcl-xL. This study confirms that Je2 is a selective inhibitor of cell death and further implicates LUCA-15 gene locus in the control of apoptosis.  相似文献   

19.
The variant cell line U937V was originally identified by a higher sensitivity to the cytocidal action of tumor necrosis factor alpha (TNFα) than that of its reference cell line, U937. We noticed that a typical morphological feature of dying U937V cells was the lack of cellular disintegration, which contrasts to the formation of apoptotic bodies seen with dying U937 cells. We found that both TNFα, which induces the extrinsic apoptotic pathway, and etoposide (VP-16), which induces the intrinsic apoptotic pathway, stimulated U937V cell death without cell disintegration. In spite of the distinct morphological differences between the U937 and U937V cells, the basic molecular events of apoptosis, such as internucleosomal DNA degradation, phosphatidylserine exposure on the outer leaflet of the plasma membrane, caspase activation and cytochrome c release, were evident in both cell types when stimulated with both types of apoptosis inducer. In the U937V cells, we noted an accelerated release of cytochrome c, an accelerated decrease in mitochondrial membrane potential, and a more pronounced generation of reactive oxygen species compared to the reference cells. We propose that the U937 and U937V cell lines could serve as excellent comparison models for studies on the mechanisms regulating the processes of cellular disintegration during apoptosis, such as blebbing (zeiosis) and apoptotic body formation.  相似文献   

20.
Smirnov  S. V.  Tammaro  P.  Hutchings  S. R.  Smith  A. L. 《Neurophysiology》2003,35(3-4):234-247
Voltage-dependent K+ (KV) channels represent the most diverse group of K+ channels ubiquitously expressed in vascular smooth muscles. The KV channels, together with other types of K+ conductances, such as Ca2+-activated (BKCa), ATP-sensitive (KATP), and inward rectifier, play an important role in the control of the cell membrane potential and regulation of the vascular contractility. Comparison of the expression of different KV channel isoforms obtained from RT-PCR studies showed that virtually all KV genes could be detected in vascular smooth muscle cells (VSMC). Based on the analysis of both mRNA and protein expressions, it is likely that KV1.1, KV1.2, KV1.3, KV1.5, KV1.6, KV2.1, and KV3.1b channel isoforms are mainly responsible for the delayed rectifier current characterized electrophysiologically in most VSMC types studied to date. It has been recently demonstrated by our research group and by others that functional expression of multiple KV channel α-subunits is not homogeneous and varies in different vascular beds of small and large arteries. Growing evidence suggests that in some small arteries, e.g., cerebral arteries and arterioles, the KV channels are activated at more negative membrane voltages than BKCa, thus making a greater contribution to the control of vascular tone. Our data also suggest that in some blood vessels, such as the rat aorta and mouse small mesenteric arteries, the KV channel current (identified mainly as passed through KV2.1 channels), but not BKCa, is the predominant conductance activated even under conditions where intracellular Ca2+ concentration is increased up to 200 nM. In addition, our data indicate that the KV2.1 channel current could also contribute to the regulation of the induced rhythmic activity in the rat aorta in vitro acting as a negative feedback mechanism for membrane depolarization. We and other experimenters also demonstrated that functional expression of KV channels is a dynamic process, which is altered under normal physiological conditions (e.g., during the development of the vessels), and in various pathological states (e.g., pulmonary hypertension developing during chronic hypoxia). Recent findings also suggest that activation of KV channels can also play a role in vascular apoptosis (causing loss of intracellular K+ and subsequent cell shrinking, one of the essential prerequisites of cellular apoptosis). To summarize, the KV channels are essential for normal vascular function, and their expression and properties are altered under abnormal conditions. Therefore, understanding of the molecular identity of native KV channels and their functional significance and elucidation of the mechanisms, which govern and control the expression of the KV channels in the vasculature, represent an important and challenging task and could also lead to the development of useful therapeutic strategies for the treatment of cardiovascular diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号