首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The covalent attachment of a 14-carbon aliphatic tail on a glycine residue of nascent translated peptide chains is catalyzed in human cells by two N-myristoyltransferase (NMT) enzymes using the rare myristoyl-CoA (C14-CoA) molecule as fatty acid donor. Although, NMT enzymes can only transfer a myristate group, they lack specificity for C14-CoA and can also bind the far more abundant palmitoyl-CoA (C16-CoA) molecule. We determined that the acyl-CoA binding protein, acyl-CoA binding domain (ACBD)6, stimulated the NMT reaction of NMT2. This stimulatory effect required interaction between ACBD6 and NMT2, and was enhanced by binding of ACBD6 to its ligand, C18:2-CoA. ACBD6 also interacted with the second human NMT enzyme, NMT1. The presence of ACBD6 prevented competition of the NMT reaction by C16-CoA. Mutants of ACBD6 that were either deficient in ligand binding to the N-terminal ACBD or unable to interact with NMT2 did not stimulate activity of NMT2, nor could they protect the enzyme from utilizing the competitor C16-CoA. These results indicate that ACBD6 can locally sequester C16-CoA and prevent its access to the enzyme binding site via interaction with NMT2. Thus, the ligand binding properties of the NMT/ACBD6 complex can explain how the NMT reaction can proceed in the presence of the very abundant competitive substrate, C16-CoA.  相似文献   

2.
A series of N-acyl pyrazoles was examined as candidate serine hydrolase inhibitors in which the active site acylating reactivity and the leaving group ability of the pyrazole could be tuned not only through the nature of the acyl group (reactivity: amide?>?carbamate?>?urea), but also through pyrazole C4 substitution with electron-withdrawing or electron-donating substituents. Their impact on enzyme inhibitory activity displayed pronounced effects with the activity improving substantially as one alters both the nature of the reacting carbonyl group (urea?>?carbamate?>?amide) and the pyrazole C4 substituent (CN?>?H?>?Me). It was further demonstrated that the acyl chain of the N-acyl pyrazole ureas can be used to tailor the potency and selectivity of the inhibitor class to a targeted serine hydrolase. Thus, elaboration of the acyl chain of pyrazole-based ureas provided remarkably potent, irreversible inhibitors of fatty acid amide hydrolase (FAAH, apparent Ki?=?100–200?pM), dual inhibitors of FAAH and monoacylglycerol hydrolase (MGLL), or selective inhibitors of MGLL (IC50?=?10–20?nM) while simultaneously minimizing off-target activity (e.g., ABHD6 and KIAA1363).  相似文献   

3.
The ferredoxin-dependent sulfite reductase from maize was treated, in separate experiments, with three different covalent modifiers of specific amino acid side chains. Treatment with the tryptophan-modifying reagent, N-bromosuccinimide (NBS), resulted in a loss of enzymatic activity with both the physiological donor for the enzyme, reduced ferredoxin, and with reduced methyl viologen, a non-physiological electron donor. Formation of the 1:1 ferredoxin/sulfite reductase complex prior to treating the enzyme with NBS completely protected the enzyme against the loss of both activities. Neither the secondary structure, nor the oxidation-reduction midpoint potential (E m) values of the siroheme and [4Fe–4S] cluster prosthetic groups of sulfite reductase, nor the binding affinity of the enzyme for ferredoxin were affected by NBS treatment. Treatment of sulfite reductase with the lysine-modifying reagent, N-acetylsuccinimide, inhibited the ferredoxin-linked activity of the enzyme without inhibiting the methyl viologen-linked activity. Complex formation with ferredoxin protects the enzyme against the inhibition of ferredoxin-linked activity produced by treatment with N-acetylsuccinimide. Treatment of sulfite reductase with N-acetylsuccinimide also decreased the binding affinity of the enzyme for ferredoxin. Treatment of sulfite reductase with the arginine-modifying reagent, phenylglyoxal, inhibited both the ferredoxin-linked and methyl viologen-linked activities of the enzyme but had a significantly greater effect on the ferredoxin-dependent activity than on the reduced methyl viologen-linked activity. The effects of these three inhibitory treatments are consistent with a possible role for a tryptophan residue the catalytic mechanism of sulfite reductase and for lysine and arginine residues at the ferredoxin-binding site of the enzyme.  相似文献   

4.
Lactase-phlorizin hydrolase complex from monkey small intestine reveals a new phlorizin hydrolase activity at pH 3.3 in the presence of certain organic acids in addition to the normal activity at optimum pH 5.4. The highest stimulation (10–15 fold) was obtained with tartaric acid. Lactase activity at pH 5.3 is unaffected but its activity at pH 3.3 is inhibited by organic acids. Tartaric acid-stimulated phlorizin hydrolase activity is inhibited by a number of organic acids which have no effect on the unstimulated enzyme. Pyruvic acid inhibits the unstimulated activity as well. SO42? and Cl? ions are potent inhibitors of the tartaric acid-stimulated phlorizin hydrolase.  相似文献   

5.
The principal contributors of biologically fixed N in natural grassland ecosystems appear to be asymbiotic bacteria and heterocystous cyanobacteria. The environmental factors of light, moisture, and temperature play important roles in the magnitude of the N2-fixation activity. Biological N2-fixation was measured in the Elizabeth's Prairie section of the Lynx Prairie Preserve, Adams County, Ohio, during 15 site visits beginning 29 March through 8 November 1980. In situ N2-fixation activity was measured using the acetylene-reduction technique. The percentage cover of cyanobacterial colonies (Nostoc sp.) was determined using Point-Frame Analysis. Soil and air temperatures and soil water potentials also were measured. Intact soil cores with a surface cover of Nostoc were collected and returned to the laboratory to quantify the effect of decreasing water potential on the N2(C2H2)ase activity of Nostoc. The N2(C2H2)ase activity of Nostoc on the intact soil cores displayed a linear response of approximately 10% decrease in N2(C2H2)ase activity per one bar decrease in soil water potential. The cyanobacteria contributed almost all of the biologically fixed N at the site until late June. From late June through to mid September, heterotrophic diazotrophs played the major role in the N2-fixation activity. These changes are attributed to fluctuations in Nostoc sp. colony cover, temperature, and soil water potentials. Extrapolation of the measured rates, and assuming an average of 10 hr per day of activity, Nostoc sp. is shown to have contributed 4.60 ± 1.17 kg N ha−1 yr−1. Heterotrophic diazotrophs contributed an estimated 3.19 ± 1.18 kg N ha−1 yr−1. The total biological N2-fixation for the site was calculated at 8.2 ± 2.55 kg N ha−1 yr−1, from additional measurements which estimated total diazotrophic activity of the site. These rates of N2-fixation are among the highest reported for temperate grassland habitats.  相似文献   

6.
α-1,4-Glucan lyase (EC 4.2.2.13) from the red seaweed Gracilariopsis lemaneiformis cleaves α-1,4-glucosidic linkages in glycogen, starch, and malto-oligosaccharides, yielding the keto-monosaccharide 1,5-anhydro-d-fructose. The enzyme belongs to glycoside hydrolase family 31 (GH31) but degrades starch via an elimination reaction instead of hydrolysis. The crystal structure shows that the enzyme, like GH31 hydrolases, contains a (β/α)8-barrel catalytic domain with B and B′ subdomains, an N-terminal domain N, and the C-terminal domains C and D. The N-terminal domain N of the lyase was found to bind a trisaccharide. Complexes of the enzyme with acarbose and 1-dexoynojirimycin and two different covalent glycosyl-enzyme intermediates obtained with fluorinated sugar analogues show that, like GH31 hydrolases, the aspartic acid residues Asp553 and Asp665 are the catalytic nucleophile and acid, respectively. However, as a unique feature, the catalytic nucleophile is in a position to act also as a base that abstracts a proton from the C2 carbon atom of the covalently bound subsite −1 glucosyl residue, thus explaining the unique lyase activity of the enzyme. One Glu to Val mutation in the active site of the homologous α-glucosidase from Sulfolobus solfataricus resulted in a shift from hydrolytic to lyase activity, demonstrating that a subtle amino acid difference can promote lyase activity in a GH31 hydrolase.  相似文献   

7.
A number of β-carboline analogs have been obtained or synthesized, and their in vitro receptor affinities and in vivo antagonist activities determined. The choice of analogs was made in order to explore the importance of the N9-H, the aromatic nitrogen and the C3-ester moiety for high-receptor affinity and antagonist activity of this class of benzodiazepine antagonist. Among the analogs investigated, we describe the properties of 3-cyano-β-carboline (lh), the first potent β-carboline antagonist without a carbonyl at the C3-position.The results obtained indicate: (1) Specific interactions of the C3-substituent with key cationic receptor sites rather than electron-withdrawing properties are important for high-receptor affinity and antagonist activity. (2) Specific in-plane interactions of the atomatic nitrogen with a cationic receptor site, rather than stacking with neutral aromatic residues of the receptor are also important for high affinity and antagonist activity. (3) While the presence of an N9H enhances receptor affinity, interaction with an anionic receptor site does not appear essential for antagonist activity.  相似文献   

8.
Brain acyl-coenzyme A hydrolase: distribution, purification and properties   总被引:6,自引:0,他引:6  
Rat brain acyl-CoA hydrolase enzymes which hydrolyse C2, C4, C8 and C16 derivatives were localized primarily in the soluble, 144,000 g, supernatant fluid. With octanoyl-CoA as substrate, long-chain acyl-CoA hydrolase activity was greater in the pons, medulla and midbrain than in the cerebral cortex and caudate nucleus. The long-chain acyl-CoA hydrolase enzyme was purified from bovine brain stems to a specific activity of 4-61 n mol of palmitoyl-CoA hydrolysed per min per mg protein. The Km values for palmitoyl-CoA and octanoyl-CoA were 5 μm and 14 μ/m , respectively. Activity of the enzyme was inhibited by bovine serum albumin and ρ-chloromercuribenzoate. The partially purified enzyme protein was found to have approximately eight titratable sulphydryl residues per 105 g of protein. Studies of the molecular weight of the enzyme indicated the presence of associated and dissociated forms with molecular weights of approximately 96,000 and 46,000 respectively.  相似文献   

9.
The recombinant cytoplasmic preparation of lysine:N6-hydroxlase catalyzes the conversion ofL-lysine to itsN6-hydroxy derivative when supplemented with the cofactors NADPH and FAD. A number of lysine analogs reflecting minor alterations in the inherent structural features of the amino acid as well compounds with relatively high affinity for lysine binding domains in other proteins were examined for their ability to serve as substrates of lysine:N6-hydroxylase. These studies have revealed that the enzyme does not tolerate any change in the structural features ofL-lysine, its preferred substrate, with the exception of the replacement of the CγH2-methylene group by sulfur, as in (S)-2-aminoethyl-L-cysteine.L-Norleucine is a potent inhibitor of the enzyme whileL-norvaline andL-α-aminobutyric acid do not exhibit such effect, indicating the importance of a C4hydrophobic side chain for effective interaction with the enzyme. Among theN-alkyl amides of hydrophobic amino acids, onlyL-norleucine methylamide andL-α-aminobutyric acid ethylamide serve as moderate inhibitors of lysine:N6-hydroxylase. Based on the enzyme's stringent substrate specificity, a mechanism involving the conversion ofL-lysine to 2-aminocaprolactam prior to its oxygenation by the 4a-peroxyflavin intermediate in the catalytic cycle is proposed.  相似文献   

10.
New active sites can be introduced into naturally occurring enzymes by the chemical modification of specific amino acid residues in concert with genetic techniques. Chemical strategies have had a significant impact in the field of enzyme design such as modifying the selectivity and catalytic activity which is very different from those of the corresponding native enzymes. Thus, chemical modification has been exploited for the incorporation of active site binding analogs onto protein templates and for atom replacement in order to generate new functionality such as the conversion of a hydrolase into a peroxidase. The introduction of a coordination complex into a substrate binding pocket of trypsin could probably also be extended to various enzymes of significant therapeutic and biotechnological importance.

The aim of this study is the conversion of trypsin into a copper enzyme: tyrosinase by chemical modification. Tyrosinase is a biocatalyst (EC.1.14.18.1) containing two atoms of copper per active site with monooxygenase activity. The active site of trypsin (EC 3.4.21.4), a serine protease was chemically modified by copper (Cu+2) introduced p-aminobenzamidine (pABA- Cu+2: guanidine containing schiff base metal chelate) which exhibits affinity for the carboxylate group in the active site as trypsin-like inhibitor. Trypsin and the resultant semisynthetic enzyme preparation was analysed by means of its trypsin and catechol oxidase/tyrosinase activity. After chemical modification, trypsin-pABA-Cu+2 preparation lost 63% of its trypsin activity and gained tyrosinase/catechol oxidase activity. The kinetic properties (Kcat, Km, Kcat/Km), optimum pH and temperature of the trypsin-pABA-Cu+2 complex was also investigated.  相似文献   

11.
A putative carotenoid oxygenase from Novosphingobium aromaticivorans was purified with a specific activity of 0.8?U/mg by His-Trap affinity chromatography. The native enzyme was estimated to be a 52?kDa monomer. Enzyme activity for β-apo-8′-carotenal was maximal at pH 8.0 and 45?°C, with a half life of 15.3?h, K m of 21?μM, and k cat of 25?l/min. The enzyme exhibited cleavage activity only for carotenoids containing one β-ionone ring and its catalytic efficiency (k cat/K m) followed the order β-apo-8′-carotenal?>?β-apo-4′-carotenal?>?γ-carotene. The enzyme converted these carotenoids to β-apo-13-carotenones by cleaving their C13–C14 double bonds. The oxygen atom of β-apo-13-carotenone originated not from water but from molecular oxygen. Thus, the enzyme was an apo-carotenoid 13,14-dioxygenase.  相似文献   

12.
l-2-Amino-Δ2-thiazoline-4-carboxylic acid hydrolase (ATC hydrolase) was purified and characterized from the crude extract of Escherichia coli, in which the gene for ATC hydrolase of Pseudomonas sp. strain ON-4a was expressed. The results of SDS–polyacrylamide gel electrophoresis and gel filtration on Sephacryl S-200 suggested that the ATC hydrolase was a tetrameric enzyme consisted of identical 25-kDa subunits. The optimum pH and temperature of the enzyme activity were pH 7.0 and 30–35°C, respectively. The enzyme did not require divalent cations for the expression of the activity, and Cu2+ and Mn2+ ions strongly inhibited the enzyme activity. An inhibition experiment by diethylpyrocarbonic acid, 2-hydroxy-5-nitrobenzyl bromide, and N-bromosuccinimide suggested that tryptophan, cysteine, or/and histidine residues may be involved in the catalytic site of this enzyme. The enzyme was strictly specific for the l-form of d,l-ATC and exhibited high activity for the hydrolysis of l-ATC with the values of K m (0.35 mM) and V max (69.0 U/mg protein). This enzyme could not cleave the ring structure of derivatives of thiazole, thiazoline, and thiazolidine tested, except for d,l- and l-ATC. These results show that the ATC hydrolase is a novel enzyme cleaving the carbon–sulfur bond in a ring structure of l-ATC to produce N-carbamoyl-l-cysteine.  相似文献   

13.

Background

Dienelactone hydrolases catalyze the hydrolysis of dienelactone to maleylacetate, which play a key role for the microbial degradation of chloroaromatics via chlorocatechols. Here, a thermostable dienelactone hydrolase from thermoacidophilic archaeon Sulfolobus solfataricus P1 was the first purified and characterized and then expressed in Escherichia coli.

Methods

The enzyme was purified by using several column chromatographys and characterized by determining the enzyme activity using p-nitrophenyl caprylate and dienelactones. In addition, the amino acids related to the catalytic mechanism were examined by site-directed mutagenesis using the identified gene.

Results

The enzyme, approximately 29 kDa monomeric, showed the maximal activity at 74 °C and pH 5.0, respectively. The enzyme displayed remarkable thermostability: it retained approximately 50% of its activity after 50 h of incubation at 90 °C, and showed high stability against denaturing agents, including various detergents, urea, and organic solvents. The enzyme displayed substrate specificities toward trans-dienelactone, not cis-isomer, and also carboxylesterase activity toward p-nitrophenyl esters ranging from butyrate (C4) to laurate (C12). The kcat/Km ratios for trans-dienelactone and p-nitrophenyl caprylate (C8), the best substrate, were 92.5 and 54.7 s−1 μM−1, respectively.

Conclusions

The enzyme is a typical dienelactone hydrolase belonging to α/β hydrolase family and containing a catalytic triad composed of Cys151, Asp198, and His229 in the active site.

General significance

The enzyme is the first characterized archaeal dienelactone hydrolase.  相似文献   

14.
Measurements were made of nitrous oxide (N2O) emissions from N‐fertilised ungrazed grassland and arable land at sites widely distributed across Great Britain during 1999–2001. The closed static chamber method was used throughout. Emissions varied widely throughout the year at each site, and between sites. Daily fluxes up to 1200 g N2O–N ha ? 1 d ? 1 were recorded. The highest annual flux was 27.6 kg N2O–N ha ? 1 at a grassland site in Wales, whereas the lowest, 1.7 kg N2O–N ha ? 1, occurred on a soil overlying chalk in southern England. The key factors affecting N2O emissions from agricultural soil were soil WFPS, temperature and soil NO3–N content. On grassland, rainfall (particularly around the time of N application), with its consequent effect on water‐filled pore space (WFPS), was the main driving factor during the growing season. Annual emission factors (EFs), uncorrected for background emission, varied from 0.4 to 6.5% of the nitrogen (N) applied, covering a similar range for grassland to that found previously for sites restricted to Scotland. Continued monitoring at a grassland reference site near Edinburgh showed that annual EFs vary greatly from year to year, even with similar management, and that several years' data are required to produce a robust mean EF. The overall distribution of EFs in this and previous studies was log‐normal. The EFs for small‐grain cereals (and oilseed rape) peaked at a much lower value than those for grassland, whereas the values for leafy vegetables and potato crops fitted well into the grassland distribution. These differences in EF between various types of crop should be taken into account when compiling regional or national N2O emission inventories.  相似文献   

15.
Field assays of N2(C2H2)ase activity were performed with intact nodules from a pure alder site (alder) and a mixed alder-aspen site (aspen). Assays were performed between 12 June and 12 August 1980 and in May 1981. N2(C2H2)ase rates are expressed as g N g nodule oven-dry wt−1 hr−1 (g N g−1 hr−1). Diurnal N2(C2H2)ase activity showed an increase in both sites between 0600 and midday, then decreased to a low by 1800. Nighttime activity in the May 1981 assay was approximately 25% of the daytime peak. Mean (±SE) 1200 hr N2(C2H2)ase activity (μg N g−1 hr−1) for all sizes in the alder stand rose from 24.56 ± 6.56 on 12 June to 73.96 ± 28.37 on 26 June and declined to 9.20 ± 2.56 by 12 August. In the aspen stand activity decreased from the 12 June rate of 21.81 ± 4.59 to 3.64 ± 1.87 on 24 July but then increased to 30.00 ± 7.39 by 12 August. Based on diurnal assays, the seasonal mean N influx (μg N g−1 hr−1) is statistically higher (P 0.05) in the alder stand with a value of 26.70 compared to 14.63 in the aspen stand. Small size class shrubs had significantly higher (P < 0.05) N2(C2H2)ase activity (μg N g−1 hr−1) in diurnal assays than medium or large class shrubs. The estimated mean (±SE) N2(C2H2)ase activity (mg N g−1 season−1) for all sizes was 44.4 ± 18.6 in the alder stand compared to 16.2 ± 5.2 in the aspen stand. Nodule excavations showed the g shrub−1 in the alder stand to be 16.48 ± 10.29, 38.57 ± 12.34 and 29.11 ± 7.15 for small, medium and large size shrubs and 12.73 ± 3.23, 28.21 ± 4.36 and 56.45 ± 16.23 for respective sizes in the aspen stand. Seasonal N influx was 4.69 kg ha−1 in the alder stand and 0.84 kg ha−1 in the aspen stand, representing 17.9% of the alder stand. Nitrogen feedback inhibition from uric acid-N influx and allelochemic interference from aspen are discussed as explanations for the differences in N influx in the two stands.  相似文献   

16.
The interaction studies of CuII nalidixic acid–DACH chemotherapeutic drug entity, [C36H50N8O6Cu] with serum albumin proteins, viz., human serum albumin (HSA) and bovine serum albumin (BSA) employing UV–vis, fluorescence, CD, FTIR and molecular docking techniques have been carried out. Complex [C36H50N8O6Cu] demonstrated strong binding affinity towards serum albumin proteins via hydrophobic contacts with binding constants, K?=?3.18?×?105 and 7.44?×?104 M–1 for HSA and BSA, respectively implicating a higher binding affinity for HSA. The thermodynamic parameters ΔG, ΔH and ΔS at different temperatures were also calculated and the interaction of complex [C36H50N8O6Cu] with HSA and BSA was found to be enthalpy and entropy favoured, nevertheless, complex [C36H50N8O6Cu] demonstrated higher binding affinity towards HSA than BSA evidenced from its higher binding constant values. Time resolved fluorescence spectroscopy (TRFS) was carried out to validate the static quenching mechanism of HSA/BSA fluorescence. The collaborative results of spectroscopic studies indicated that the microenvironment and the conformation of HSA and BSA (α–helix) were significantly perturbed upon interaction with complex [C36H50N8O6Cu]. Hirshfeld surfaces analysis and fingerprint plots revealed various intermolecular interactions viz., N–H····O, O–H····O and C–H····O linkages in a 2–dimensional framework that provide crucial information about the supramolecular architectures in the complex. Molecular docking studies were carried out to ascertain the preferential binding mode and affinity of complex [C36H50N8O6Cu] at the target site of HSA and BSA. Furthermore, only for Transmission electroscopy microscopy micrographs of HSA and BSA in presence of complex [C36H50N8O6Cu] revealed major protein morphological transitions and aggregation which validates efficient delivery of complex by serum proteins to the target site.

Communicated by Ramaswamy H. Sarma  相似文献   


17.
Sulfite ion, the hydrated form of SO2 which is an air pollutant, was found to be an inhibitor of phosphoenolpyruvate carboxylase(s) isolated from corn leaves. The inhibition was partial even in the presence of excess SO32?. It inhibited the enzyme competitively with respect to HCO3?, noncompetitively with respect to phosphoenolpyruvate, and uncompetitively with respect to Mg2+. The kinetics of inhibition suggest that an alternate pathway is operative in the presence of SO32?. The enzyme(s) were activated by glucose 6-phosphate which affected primarily the affinity of the enzyme for phosphoenolpyruvate. The binding site of glucose 6-phosphate was apparently distinct from the catalytic site of the enzyme since partial destruction of the catalytic site by heat had no effect on the inhibition by SO32?, but glucose 6-phosphate lost its activating effect. The inhibition due to SO32? was relieved by glucose 6-phosphate.  相似文献   

18.
The goat mammary gland fatty acid synthetase hydrolysed both medium (C8:0, C10:0) and long (C16:0, C18:0) chain length acyl CoA esters, whereas the enzyme from rabbit mammary gland only hydrolysed long chain length acyl CoA esters. The medium chain acyl-thioester hydrolase activity of goat mammary gland fatty acid synthetase was much less sensitive to inhibition by phenylmethanesulfonyl-fluorid than the long chain acylthioester hydrolase activity. These results indicate the presence of either two acyl-thioester hydrolases with different specificity or one acyl-thioester hydrolase containing two different active sites.  相似文献   

19.
Combined measurements of nitrification activity and N2O emissions were performed in a lowland and a montane tropical rainforest ecosystem in NE-Australia over a 18 months period from October 2001 until May 2003. At both sites gross nitrification rates, measured by the BaPS technique, showed a strong seasonal pattern with significantly higher rates of gross nitrification during wet season conditions. Nitrification rates at the montane site (1.48?±?0.24–18.75?±?2.38 mg N kg?1 day?1) were found to be significantly higher than at the lowland site (1.65?±?0.21–4.54?±?0.27 mg N kg?1 day?1). The relationship between soil moisture and gross nitrification rates could be described best by O’Neill functions having a soil moisture optimum of nitrification at app. 65% WFPS. At the lowland site, for which continuous measurements of N2O emissions were available, nitrification was positively correlated with N2O emission. Nitrification contributed significantly to N2O formation during dry season (app.85%) but less (app. 30%) during wet season conditions. In average 0.19‰ of the N metabolized by nitrification was released as N2O. The N2O fraction loss for nitrification was positively correlated with changes in soil moisture and varied slightly between 0.15 and 0.22‰. Our results demonstrate that combined N2O emission and microbial N turnover studies covering prolonged observation periods are needed to clarify and quantify the role of the microbial processes nitrification and denitrification for annual N2O emissions from soils of terrestrial ecosystems.  相似文献   

20.
A role for N-linked oligosaccharides on the biochemical properties of recombinant α-l-arabinofuranosidase 54 (AkAbf54) defined in glycoside hydrolase family 54 from Aspergillus kawachii expressed in Pichia pastoris was analyzed by site-directed mutagenesis. Two N-linked glycosylation motifs (Asn83–Thr–Thr and Asn202–Ser–Thr) were found in the AkAbf54 sequence. AkAbf54 comprises two domains, a catalytic domain and an arabinose-binding domain classified as carbohydrate-binding module 42. Two N-linked glycosylation sites are located in the catalytic domain. Asn83, Asn202, and the two residues together were replaced with glutamine by site-directed mutagenesis. The biochemical properties and kinetic parameters of the wild-type and mutant enzymes expressed in P. pastoris were examined. The N83Q mutant enzyme had the same catalytic activity and thermostability as the wild-type enzyme. On the other hand, the N202Q and N83Q/N202Q mutant enzymes exhibited a considerable decrease in thermostability compared to the glycosylated wild-type enzyme. The N202Q and N83Q/N202Q mutant enzymes also had slightly less specific activity towards arabinan and debranched arabinan. However, no significant effect on the affinity of the mutant enzymes for the ligands arabinan, debranched arabinan, and wheat and rye arabinoxylans was detected by affinity gel electrophoresis. These observations suggest that the glycosylation at Asn202 may contribute to thermostability and catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号