首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intense magnetic fields have been shown to affect memory-related behaviours of rodents. A series of experiments was performed to investigate further the effects of a 50 Hz magnetic field on the foraging behaviour of adult, male C57BL/6J mice performing a spatial learning task in an eight-arm radial maze. Exposure to vertical, sinusoidal magnetic fields between 7.5 μT and 7.5 mT for 45 min immediately before daily testing sessions caused transient decreases in performance that depended on the applied flux density. Exposure above a threshold of between 7.5 and 75 μT significantly increased the number of errors the animals made and reduced the rate of acquisition of the task without any effect on overall accuracy. However, the imposition of a 45-minute delay between exposure at 0.75 mT and behavioural testing resulted in the elimination of any deficit. Similarly, exposure to fields between 7.5 μT and 0.75 mT for 45 min each day for 4 days after training had no amnesic effects on the retention and subsequent performance of the task. Overall, these results provide additional evidence that 50 Hz magnetic fields may cause subtle changes in the processing of spatial information in mice. Although these effects appear dependent on field strength, even at high flux densities the field-induced deficits tend to be transient and reversible. Bioelectromagnetics 19:486–493, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

2.
Work in our laboratory has revealed autonomic and/or behavioral sensitivity of mice, rats, and a domestic fowl to extremely-low-frequency (ELF) or nominally static magnetic (B) fields at flux densities between 250 and 1700 μT (rms). To extend our work, an automated exposure and data-acquisition system was used with the technique of conditional suppression to assess behavioral sensitivity to time-varying B fields. Each of five rats was exposed aperiodically to a B field during 3 min warning periods that terminated in a brief electric shock. The difference between rates of lever pressing during B-field warning periods and rates during immediately antecedent, 3 min control periods was analyzed at frequencies of 7, 16, 30, 60, and 65.1 Hz. To produce equivalent induced voltages in the rat at each frequency, graded flux densities were established that ranged from 1900 μT at 7 Hz to 200 μT at 65.1 Hz. Analysis of differences in lever-pressing rates revealed that in a given session of testing the rats would increasingly suppress responding when exposed to a B field, but this trend was independent of frequency. This experiment provides evidence of behavioral sensitivity by a mammal to an ELF magnetic field. © 1994 Wiley-Liss, Inc.  相似文献   

3.
A series of four experiments was performed to determine whether acute exposure to a range of 50 Hz magnetic fields had any effect on a learning task in adult male CD1 mice. A radial-arm maze placed within the bore of an electromagnet was used to assess spatial discrimination learning for food reward. Subjects were reduced to 85% of their free-feeding weight and were placed in the maze for up to 15 minutes each day for 10 days. Performance of the task was measured by using maximum likelihood techniques to calculate the probability that an animal would not reenter any given arm of the maze. Experimental subjects were exposed to a vertical, 50 Hz sinusoidal magnetic field at 5 μT, 50 μT, 0.5 mT, or 5.0 mT (rms). Control subjects were exposed only to a background time-varying field of less than 50 nT and the ambient static field of about 40 μT. The variation in the applied magnetic field was less than 5% except at the ends of the arms, where it approached 10%. It was found that all eight groups of subjects (n = 10 in all cases) showed similar increases in performance with testing, and the acquisition curve for each group of experimental subjects was not significantly different from that of their control group (P > 0.05 in all cases). It was concluded that exposure had no effect on learning at any flux density. This result is contrary to the findings of a number of preliminary studies, although other studies have reported that magnetic fields do not affect spatial learning in adult male rodents. It is possible that differences between experimental conditions might explain some of this apparent discrepancy. © 1996 Wiley-Liss, Inc.  相似文献   

4.
A series of four experiments was performed to determine the effect of exposure to a 50 Hz magnetic field on memory-related behaviour of adult, male C57BL/6J mice. Experimental subjects were exposed to a vertical, sinusoidal magnetic field at 0.75 mT (rms), for 45 min immediately before daily testing sessions on a spatial learning task in an eight-arm radial maze. Control subjects were only exposed to a background time-varying field of less than 50 nT and the ambient static field of about 40 μT. In each experiment, exposure significantly reduced the rate of acquisition of the task but did not affect overall accuracy. This finding is consistent with the results of another study that found that prior exposure to 60 Hz magnetic fields affected spatial learning in rats. Bioelectromagnetics 19:79–84, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

5.
A series of epidemiological studies have indicated associations between exposure to magnetic fields (MFs) and a variety of cancers, including breast cancer. In order to test the possibility that MF acts as a cancer promoter or copromoter, four separate experiments have been conducted in rats in which the effects of chronic exposure to MFs on the development of mammary tumors induced by 7,12-dimethylbenz(a)anthracene (DMBA) were determined. Female rats were exposed in magnetic coils for 91 days (24 h/day) to either alternating current (AC; 50 Hz)-MF or direct current (DC)-MF. Magnetic flux density of the DC-MF was 15 mT. Two AC-MF exposures used a homogeneous field with a flux density of 30 mT (rms); one used a gradient field with flux density ranging from 0.3–1 μT. DMBA (5 mg) was administered orally at the onset of MF exposure and was repeated thrice at intervals of 1 week. In each experiment, 18–36 animals were exposed in 6 magnetic coils. The same number of rats were used as sham-exposed control. These control animals were treated with DMBA and were placed in dummy coils in the same room as the MF-exposed rats. Furthermore, groups of age-matched rats (reference controls) were treated with DMBA but housed in another room to exclude any MF exposure due to the magnetic stray field from the MF produced by coils. At the end of the exposure or sham-exposure period, tumor number and weight or size of tumors were determined at necropsy. Results were as follows: In sham-exposed animals or reference controls, the tumor incidence varied between 50 and 78% in the 4 experiments. The average number of mammary tumors per tumor-bearing animal varied between 1.6 and 2.9. In none of the experiments did MFs significantly alter tumor incidence, but in one of the experiments with AC-MF exposure at 30 mT, the number of tumors per tumor-bearing animal was significantly increased. Furthermore, exposure to a DC-MF at 15 mT significantly enhanced the tumor weight. Exposure to a gradient AC-MF at 0.3–1 μT exerted no significant effects. These experiments seem to indicate that MFs at high flux densities may act as a promoter or copromoter of breast cancer. However, this interpretation must be considered only a tentative conclusion because of the limitations of this study, particularly the small sample size used for MF exposure and the lack of repetition of data. © 1993 Wiley-Liss. Inc.  相似文献   

6.
The sources for the effects of electromagnetic fields (EMFs) have been traced to time-varying as well as steady electric and magnetic fields, both at low and high to ultra high frequencies. Of these, the effects of low-frequency (50/60 HZ) magnetic fields, directly related to time-varying currents, are of particular interest as exposure to some fields may be commonly experienced. In the present study, investigations have been carried out at low-level (mT) and low-frequency (50 Hz) electromagnetic fields in healthy human volunteers. Their peripheral blood samples were exposed to 5 doses of electromagnetic fields (2,3,5,7 and 10mT at 50 Hz) and analysed by comet assay. The results were compared to those obtained from unexposed samples from the same subjects. 50 cells per treatment per individual were scored for comet-tail length which is an estimate of DNA damage. Data from observations among males were pooled for each flux density for analysis. At each flux density, with one exception, there was a significant increase in the DNA damage from the control value. When compared with a similar study on females carried out by us earlier, the DNA damage level was significantly higher in the females as compared to the males for each flux density.  相似文献   

7.
We present a hypothesis that the risk of childhood leukemia is related to exposure to specific combinations of static and extremely-low-frequency (ELF) magnetic fields. Laboratory data from calcium efflux and diatom mobility experiments were used with the gyromagnetic equation to predict combinations of 60 Hz and static magnetic fields hypothesized to enhance leukemia risk. The laboratory data predicted 19 bands of the static field magnitude with a bandwidth of 9.1 μT that, together with 60 Hz magnetic fields, are expected to have biological activity. We then assessed the association between this exposure metric and childhood leukemia using data from a case-control study in Los Angeles County. ELF and static magnetic fields were measured in the bedrooms of 124 cases determined from a tumor registry and 99 controls drawn from friends and random digit dialing. Among these subjects, 26 cases and 20 controls were exposed to static magnetic fields lying in the predicted bands of biological activity centered at 38.0 μT and 50.6 μT. Although no association was found for childhood leukemia in relation to measured ELF or static magnetic fields alone, an increasing trend of leukemia risk with measured ELF fields was found for subjects within these static field bands (P for trend = 0.041). The odds ratio (OR) was 3.3 [95% confidence interval (CI) = 0.4–30.5] for subjects exposed to static fields within the derived bands and to ELF magnetic field above 0.30 μT (compared to subjects exposed to static fields outside the bands and ELF magnetic fields below 0.07 μT). When the 60 Hz magnetic fields were assessed according to the Wertheimer-Leeper code for wiring configurations, leukemia risks were again greater with the hypothesized exposure conditions (OR = 9.2 for very high current configurations within the static field bands: 95% CI = 1.3–64.6). Although the risk estimates are based on limited magnetic field measurements for a small number of subjects, these findings suggest that the risk of childhood leukemia may be related to the combined effects of the static and ELF magnetic fields. Further tests of the hypothesis are proposed. © 1995 Wiley-Liss, Inc.  相似文献   

8.
We exposed rats to circularly polarized 50 Hz magnetic fields to determine if plasma testosterone concentration was affected. Previous experiments indicate that magnetic fields suppress the nighttime rise in melatonin, suggesting that other neuroendocrine changes might occur as well. Male Wistar-King rats were exposed almost continuously for 6 weeks to magnetic flux densities of 1,5, or 50 μT. Blood samples were obtained by decapitation at 12:00 h and 24:00 h. Plasma testosterone concentration showed a significant day-night difference, with a higher level at 12:00 h when studied in July and December, but the day-night difference disappeared when concentrations were studied in April. In three experiments, magnetic field exposure had no statistically significant effect on plasma testosterone levels compared with the sham-exposed groups. These findings indicate that 6 weeks of nearly continuous exposure to circularly polarized, 50 Hz magnetic fields did not change plasma testosterone concentration in rats. © 1994 Wiley-Liss, Inc.  相似文献   

9.
In previous research, we have found that acute exposure to a 60 Hz magnetic field caused a decrease in cholinergic activity in the frontal cortex and hippocampus of the rat. In the present study, the effects of exposure to different intensities of the magnetic field and durations of exposure were investigated. Rats were exposed to a 60 Hz magnetic field for 60 min at a flux density of either 0.5, 1.0, 1.5, or 2.0 mT. A significant decrease in cholinergic activity was observed in the frontal cortex and hippocampus immediately after exposure to the 2.0 mT field. No significant effect was observed at lower intensities. In another experiment, effect of exposure to a 1.0 mT magnetic field for 30, 45, 60, and 90 min was investigated. A decrease in cholinergic activity was found in both brain areas after 90 min of exposure. No significant effect was observed after shorter durations of exposure. In a further experiment, the exposure duration was extended to 3 h at flux densities of 0.5, 0.1, and 0.05 mT. A significant decrease in cholinergic activity was observed in the frontal cortex and hippocampus of the rat immediately after exposure to all the intensities. It is concluded that the intensity and duration of exposure interact. By increasing the duration of exposure, effects can be observed at lower intensities.  相似文献   

10.
The aim of this study was to investigate the influence of pulsed electromagnetic fields with various flux densities and frequencies on neurite outgrowth in PC12 rat pheochromocytoma cells. We have studied the percentage of neurite-bearing cells, average length of neurites and directivity of neurite outgrowth in PC12 cells cultured for 96 hours in the presence of nerve growth factor (NGF). PC12 cells were exposed to 50 Hz pulsed electromagnetic fields with a flux density of 1.37 mT, 0.19 mT and 0.016 mT respectively. The field was generated through a Helmholtz coil pair housed in one incubator and the control samples were placed in another identical incubator. It was found that exposure to both a relatively high flux density (1.37 mT) and a medium flux density (0.19 mT) inhibited the percentage of neurite-bearing cells and promoted neurite length significantly. Exposure to high flux density (1.37 mT) also resulted in nearly 20% enhancement of neurite directivity along the field direction. However, exposure to low flux density field (0.016 mT) had no detectable effect on neurite outgrowth. We also studied the effect of frequency at the constant flux density of 1.37 mT. In the range from 1 ∼ 100 Hz, only 50 and 70 Hz pulse frequencies had significant effects on neurite outgrowth. Our study has shown that neurite outgrowth in PC12 cells is sensitive to flux density and frequency of pulsed electromagnetic field.  相似文献   

11.
The effects of exposure to static (1–100 mT) or sinusoidal (1 Hz, 1.6 mT) magnetic fields on the production of nitric oxide (NO) by murine BCG-activated macrophages were investigated. In these cells, the inducible isoform of NO synthase is present. No significant differences were observed in nitrite levels among exposed, sham-exposed, or control macrophages after exposure for 14 h to static fields of 1, 10, 50, and 100 mT and to sinusoidal 1.6 mT, 1 Hz magnetic fields. © 1996 Wiley-Liss, Inc.  相似文献   

12.
It is widely accepted that moderate levels of nonionizing electric or magnetic fields, for example 50/60 Hz magnetic fields of about 1 mT, are not mutagenic. However, it is not known whether such fields can enhance the action of known mutagens. To explore this question, a stringent experimental protocol, which included blinding and systematic negative controls, was implemented, minimizing the possibility of observer bias or experimental artifacts. As a model system, we chose to measure mutation frequencies induced by 2 Gy gamma rays in the redox-sensitive hypoxanthine-guanine phosphoribosyl transferase (HPRT) gene in Chinese hamster ovary cells. We tested whether a 12-h exposure to a 60 Hz sinusoidally oscillating magnetic-flux density (Brms = 0.7 mT) could affect the mutagenic effects of ionizing radiation on the HPRT gene locus. We determined that the magnetic-field exposure induced an approximate 1.8-fold increase in HPRT mutation frequency. Additional experiments at Brms = 0.23 and 0.47 mT revealed that the effect was reduced at lower flux densities. The field exposure did not enhance radiation-induced cytotoxicity or mutation frequencies in cells not exposed to ionizing radiation. These results suggest that moderate-strength, oscillating magnetic fields may act as an enhancer of mutagenesis in mammalian cells.  相似文献   

13.
Acute (2 h) exposure of rats to a 60 Hz magnetic field (flux densities 0.1, 0.25, and 0.5 mT) caused a dose-dependent increase in DNA strand breaks in brain cells of the animals (assayed by a microgel electrophoresis method at 4 h postexposure). An increase in single-strand DNA breaks was observed after exposure to magnetic fields of 0.1, 0.25, and 0.5 mT, whereas an increase in double-strand DNA breaks was observed at 0.25 and 0.5 mT. Because DNA strand breaks may affect cellular functions, lead to carcinogenesis and cell death, and be related to onset of neurodegenerative diseases, our data may have important implications for the possible health effects of exposure to 60 Hz magnetic fields. Bioelectromagnetics 18:156–165, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

14.
15.

Background

It has been hypothesized in the literature that exposure to extremely low frequency electromagnetic fields (50 or 60 Hz) may lead to human health effects such as childhood leukemia or brain tumors. In a previous study investigating multiple types of cells from brain and kidney of the mouse (Acta Neuropathologica 2004; 107: 257–264), we found increased unrepaired nuclear DNA single strand breaks (nDNA SSB) only in epithelial cells of the choroid plexus in the brain using autoradiographic methods after a continuous eight-week 50 Hz magnetic field (MF) exposure of adult mice with flux density of 1.5 mT.

Methods

In the present study we tested the hypothesis that MF exposure with lower flux densities (0.1 mT, i.e., the actual exposure limit for the population in most European countries, and 1.0 mT) shows similar results to those in the previous study. Experiments and data analysis were carried out in a similar way as in our previous study.

Results

Continuous eight-week 50 Hz MF exposure with 0.1 mT or 1.0 mT did not result in increased persisting unrepaired nDNA SSB in distinct types of cells in the brain, kidney, and liver of adult mice. MF exposure with 1.0 mT led to reduced unscheduled DNA synthesis (UDS) in epithelial cells in the choroid plexus of the fourth ventricle in the brain (EC-CP) and epithelial cells of the cortical collecting duct in the kidney, as well as to reduced mtDNA synthesis in neurons of the caudate nucleus in the brain and in EC-CP.

Conclusion

No evidence was found for increased persisting unrepaired nDNA SSB in distinct types of cells in the brain, kidney, and liver of adult mice after continuous eight-week 50 Hz magnetic field exposure with flux density of 0.1 mT or 1.0 mT.  相似文献   

16.
This study was undertaken to investigate whether power frequency magnetic fields can affect the kinetics of cell cycle progression in exposed human cells. To achieve this, cultures of normal human fibroblasts were synchronised in the G(0) phase of the cell cycle and exposed to 50 Hz magnetic fields at a range of flux densities. Progression through the cycle was monitored by examining the timing of entry into S phase, as characterised by the onset of DNA synthesis. Simultaneous positive controls were exposed to human recombinant fibroblast growth factor to demonstrate that the system was responsive to external stimuli. Exposure to magnetic fields at 20 and 200 microT induced a small but significant increase in the length of the G(1) phase of the cell cycle. However, exposure at higher flux densities of 2 and 20 mT had no significant effect. These results are discussed in relation to weak magnetic field effects on free radical concentration.  相似文献   

17.
We report on a study where 4-day old chicken embryos from different flocks were pre-treated with 50 Hz magnetic fields (MF) prior to a 60-min UV-C exposure (1.7 mW/cm(2)) to investigate the possible protective effect of MF exposure on UV-induced embryo death. Different flux densities (0.010, 0.025, 0.050, 0.10, and 0.20 mT), field directions (vertical and horizontal), as well as MF exposure times (10, 20, and 60 min) were employed. We did not find any significant effects by MF exposure, irrespective of exposure time, flux density, or field direction on the survival of embryos. Neither could we find any flock dependency on sensitivity to MF exposure.  相似文献   

18.
Primary-culture bone cells were exposed to ion-resonance (IR) magnetic fields tuned to Ca2+. Cytosolic calcium concentration, [Ca2+]c, was measured by using fura-2 during field exposure. The fields investigated were 20 μT static + 40 μT p-p at either 15.3 or 76.6 Hz, and 0.13 mT static + either 0.5 or 1.0 mT p-p at 100 Hz. Other parameters included field orientation, culture age (2 or 5 days after plating), and the presence of serum (0 or 2%) during exposure. Total experiment time was 29.5 min: The field was applied after 2 min, and bradykinin was added as an agonist control after 22 min. The data were quantified on a single-cell basis during the 2–22 min exposure period in terms of the magnitude of the largest occurring [Ca2+]c spike normalized to local baseline. Field-exposed and control groups were characterized in terms of the percent of cells exhibiting spike magnitudes above thresholds of 100 or 66% over baseline and were compared by using Fisher's exact test. Without serum, there was little evidence that IR magnetic fields altered [Ca2+]c. However, in the presence of 2% serum, 3 of the 16 experiments exhibited significant effects at the 100% threshold. Reducing this threshold to 66% resulted in five experiments exhibiting significant effects. Most strikingly, in all of these cases, the field acted to enhance [Ca2+]c activity as opposed to suppressing [Ca2+]c activity. These findings suggest a role for serum or for constituents within serum in mediating the effects of IR magnetic fields on cells and may provide a resolution pathway to the dilemma imposed by theoretical arguments regarding the possibility of such phenomena. Possible roles of serum and future studies are discussed. Bioelectromagnetics 18:203–214, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

19.
The viability of the microbes Saccharomyces cerevisiae, Bacillus circulans, Escherichia coli, Micrococcus luteus, Pseudomonas fluorescens, Salmonella enteritidis, Serratia marcescens, and Staphylococcus aureus was tested under static magnetic field exposure up to 24 h in either a homogeneous (159.2 ± 13.4 mT) or three types of inhomogeneous static magnetic fields: (i) peak‐to‐peak magnetic flux density 476.7 ± 0.1 mT with a lateral magnetic flux density gradient of 47.7 T/m, (ii) 12.0 ± 0.1 mT with 1.2 T/m, or (iii) 2.8 ± 0.1 mT with 0.3 T/m. Even the longest period of exposure failed to produce any effect in the growth of bacteriae that could be correlated with static magnetic field exposure. Bioelectromagnetics 31:220–225, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
The study investigates the impact of exposure to the stray magnetic field of a whole-body 7 T MRI scanner on neurobehavioral performance and cognition. Twenty seven volunteers completed four sessions, which exposed them to approximately 1600 mT (twice), 800 mT and negligible static field exposure. The order of exposure was assigned at random and was masked by placing volunteers in a tent to hide their position relative to the magnet bore. Volunteers completed a test battery assessing auditory working memory, eye-hand co-ordination, and visual perception. During three sessions the volunteers were instructed to complete a series of standardized head movements to generate additional time-varying fields ( approximately 300 and approximately 150 mT.s(-1) r.m.s.). In one session, volunteers were instructed to keep their heads as stable as possible. Performance on a visual tracking task was negatively influenced (P<.01) by 1.3% per 100 mT exposure. Furthermore, there was a trend for performance on two cognitive-motor tests to be decreased (P<.10). No effects were observed on working memory. Taken together with results of earlier studies, these results suggest that there are effects on visual perception and hand-eye co-ordination, but these are weak and variable between studies. The magnitude of these effects may depend on the magnitude of time-varying fields and not so much on the static field. While this study did not include exposure above 1.6 T, it suggests that use of strong magnetic fields is not a significant confounder in fMRI studies of cognitive function. Future work should further assess whether ultra-high field may impair performance of employees working in the vicinity of these magnets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号