首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
α,β-Dehydro amino acid residues are known to constrain the peptide backbone to the β-bend conformation. A pentapeptide containing only one α,β dehydrophenylalanine (ΔPhe) residue has been synthesized and crystallized, and its solid state conformation has been determined. The pentapeptide Boc-Leu-Phe-Ala-ΔPhe-Leu-OMe (C39H55N5O8, Mw = 721.9) was crystallized from aqueous methanol. Monoclinic space group was P21, a = 10.290(2)°, b = 17.149(2)°, c = 12.179(2) Å, β = 96.64(1)° with two molecules in the unit cell. The x-ray (Mo Kα, λ = 0.7107A) intensity data were collected using a CAD4 diffractometer. The crystal structure was determined by direct methods and refined using least-squares technique. R = 4.4% and Rw = 5.4% for 4403 reflections having |F0| ≥ 3σ(|F0|). All the peptide links are trans and the pentapeptide molecule assumes 310-helical conformation. The mean ?,ψ values, averaged over the first four residues, are ?64.4°, ?22.4° respectively. There are three 4 → 1 intramolecular hydrogen bonds, characteristic of 310,-helix. In the crystal, the peptide helices interact through two head-to-tail. N? H? O intermolecular hydrogen bonds. The peptide molecules related by 21, screw symmetry form a skewed assembly of helices. © 1995 John Wiley & Sons, Inc.  相似文献   

2.
3.
Ch. Pulla Rao  P. Balaram 《Biopolymers》1982,21(12):2461-2472
The pentapeptide Boc-Leu-Aib-Pro-Val-Aib-OMe, a fragment of alamethicin and suzukacillin, crystallizes in the space group P21, with a = 11.034 (2), b = 10.894 (2), c = 15.483 (2) Å, β = 104.80 (2)° and Z = 2. The crystal structure has been solved by direct methods and refined to an R value of 0.069. The peptide backbone folds into a right-handed 310-helical conformation, stabilized by two intramolecular 4 → 1 hydrogen bonds between the Leu(1) CO and Val(4) NH and Aib(2) CO and Aib(5) NH groups. The solid-state conformation is consistent with results of spectroscopic analysis in solution.  相似文献   

4.
5.
6.
The pentapeptide Boc-Val-ΔPhe-Gly-ΔPhe-Val-OMe, containing two dehydro-phenylalanine (ΔPhe) residues, has been synthesized and its structure investigated. In the crystalline state, the molecule adopts a right-handed 310-helical conformation stabilized by two intramolecular hydrogen bonds between CO of Val1 and NH of ΔPhe4, and between CO of ΔPhe2 and NH of Val5, respectively. NMR measurements are consistent with the presence of 310-helical structures also in acetonitrile and dimethylsulphoxide solution: the distances between backbone protons estimated from NOE connectivities are in overall agreement with those observed in the solid state; the chemical shifts of the amide protons show the smaller temperature coefficients for the NHs that in solid state are involved in intramolecular hydrogen bonds. The CD spectra in acetonitrile, chloroform, methanol and dimethylsulphoxide display exciton couplets of bands corresponding to the ΔPhe electronic transition at 280nm; the sign of the bands is consistent with the presence of helical structures having a prevalent left-handed screw sense. Addition of 1,1,1,3,3,3-hexafluoro- propan-2-ol gives rise to the gradual appearance of a couplet of opposite sign, suggesting the helix reversal from left-handed sense to right-handed sense. The conformational behaviour is discussed on the basis of the specific sequence of the peptide.  相似文献   

7.
The peptide Boc-L-Val-ΔPhe-ΔPhe-L-Val-OCH3 was synthesized by the azlactone method in solution phase, and its crystal and molecular structures were determined by x-ray diffraction method. Single crystals were grown by slow evaporation from a methanol/water solution at 6°C. The crystals belong to an orthorhombic space group P212121 with a = 10.478 (6) Å, b = 13.953 (1), c = 24.347 (2) and Z = 4. The structure was determined by direct methods and refined by least squares procedure to an R value of 0.052. The structure consists of a peptide and a water molecule. The peptide adopts two overlapping β-turn conformations of Types II and I′ with torsion angles: ϕ1 = -54.8 (6), ψ1 = 130.5 (4), ϕ2 = 65.8 (5), ψ2 = 12.8 (6), ϕ3 = 79.4 (5), ψ3 = 3.9 (7)°. The conformation is stabilized by intramolecular hydrogen bonds involving Boc CO and NH of ΔPhe3 and CO of Val1 and NH of Val4. The molecules are tightly packed in the unit cell. The crystal structure is stabilized by hydrogen bonds involving NH of ΔPhe2 and CO of a symmetry related (x-½, ½ -y, -z) ΔPhe2. The solvent-water molecule forms two hydrogen bonds with peptide molecule involving NH of Val1 as an acceptor and another with CO of a symmetry related (1 -x, y-½, ½ -z) ΔPhe3 as a donor. These studies indicate that a tetrapeptide with two consecutive ΔPhe residues sequenced with valines on both ends adopts two overlapping β-turns of Types II and I′. © 1996 John Wiley & Sons, Inc.  相似文献   

8.
For-Thp-Leu-ΔzPhe-OMe ( 2 ), an analogue of the chemotactic tripeptide For-Met-Leu-Phe-OMe, containing 4-aminotetrahydrothiopyran-4-carboxylic acid (Thp) and (Z)-2,3-didehydrophenylalanine (ΔzPhe) as achiral, conformationally restricted mimics of Met and Phe, respectively, has been synthesized. In the crystal the new formyltripeptide adopts a type I β-turn conformation stabilized by a weak H bond between the formylic oxygen and the ΔzPhe NH. 1H-nmr analysis based on NH solvent accessibility and nuclear Overhauser effect experiments suggests that the β-turn is not preferred in CDCl3 solution where a γ-turn, centered at the Thp residue, prevails. The biological activity of 2 has been determined on human neutrophils and compared to that of previously studied analogues. The tripeptide 2 is practically unable to elicit superoxide anion production and lysozyme release, while slight, but not statistically significant activity was induced in chemotaxis. The role of the orientation of the aromatic ring with respect to the backbone adjacent atoms is discussed. © 1994 John Wiley & Sons, Inc.  相似文献   

9.
The molecular structure of three protected AzaPro-containing peptides have been determined by x-ray diffraction: Z-AzaPro-NHiPr ( 1 ; Z: benzyloxycarbonyl), Z-AzaPro-L -Ala-NHiPr ( 2 ), and Boc-L -Ala-AzaPro-NHiPr ( 3 ; Boc: tert-butyloxycarbonyl). Starting from the key synthon benzyl-azaprolinate, compounds 1 , 2 , and 3 have been prepared by combined use of liquid phase peptide synthesis method and adequate isocyanates. In all peptides, the following geometric characteristics are retained: (a) pyramidal character of the two nitrogen atoms of the pyrazolidine ring; (b) pseudo cis conformation of the urethane ( 1 , 2 ) or tertiary amide ( 3 ) function preceding the AzaPro residue; (c) identical absolute values of the Azaproline residue torsion angles “?, ψ” respectively 111° and 23°. In compound 2 , the two nitrogen atoms of the pyrazolidine ring are R, R but the opposite S, S absolute configurations are observed in compound 3 . In the crystal, compound 3 adopts a folded structure similar to a type VI β-turn with a weak intramolecular i + 3 → i hydrogen bond, while an extended structure is observed in compound 2 . In the light of our findings, in a peptide chain and contrary to the Pro residue, an AzaPro residue should prevent the formation of any type of any type of β-turn with the residue following it but could accommodate a folded structure with a pseudo type VI βturn with the preceding residue. If confirmed, this would be of tremendous importance in the design of biologically active peptides and drugs. © 1993 John Wiley & Sons, Inc.  相似文献   

10.
The crystal and molecular structure of the peptide Boc-L -Ala-Δphe-Δphe-NHMe, containing two consecutive dehydro-phenylalanine (Δphe) residues, has been solved by x-ray diffraction. Two independent molecules, X and Y, are present in the crystallographic unit. Their conformation corresponds approximately to an incipient 310-helix stabilized by two intramolecular hydrogen bonds. The (?, ψ) torsion angles, however, have negative and positive signs in the two molecules X and Y, respectively. Therefore, in spite of the presence of an amino acid residue of the L configuration, the two helical molecules have opposite screw senses, even though the right-handed helix is less distorted than the left-handed one in correspondence of the L -Ala residue. The CD spectra in various solvents exhibit exciton bands originating from dipole–dipole interaction between the Δphe side chains. Addition of DMSO to the chloroform solution produces, as a first step, a strong increasing of the CD bands, which are then progressively canceled by increasing DMSO concentration. The nmr data parallel the behavior observed in the CD spectra. In CDCl3 solution, the temperature coefficients of the NH resonances are consistent with the involvement of the last two amide protons of the sequence in intramolecular hydrogen bonds, but only negligibly small nuclear Overhauser effects (NOE) are observed. Addition of 5% DMSO-d6 allows the observation of diagnostic NOEs. CD and nmr data indicate that the solid state structure is retained in solution, and are consistent with the presence of right-handed and left-handed conformers, with a prevalence of the more stable right-handed one. © 1993 John Wiley & Sons, Inc.  相似文献   

11.
In order to induce a β-turn conformation into the chemotactic linear tripeptide N-formyl-L -methionyl-L -leucyl-L -phenylalanine (fMLP), the new analogue N-formyl-L -methionyl-ΔZleucyl-L -phenylalanine methyl ester [ ΔZLeu]2f MLP-OMe ( 1 ) has been synthesized. The conformational and biochemical consequences of this chemical modification have been determined. Analogue 1 has been synthesized by using N-carboxy-(Z)-α,β-didehydroleucine anhydride as key compound to introduce the unsaturated residue at the central position of the tripeptide 1 . The x-ray analysis shows that 1 adopts in the crystal a type II β-turn conformation in which the new residue occupies the (i + 2) position, and an intramolecular H bond is formed between the formylic oxygen and the Phe NH. 1H-nmr analysis based on nuclear Overhauser effect measurements suggests that the same folded conformation is preferred in CDCl3 solution; this finding is also supported by molecular dynamics simulation. The biological activity of 1 has been determined on human neutrophils (polymorphonuclear leukocytes) and compared to that shown by f MLP-OMe. Chemotactic activity, granule enzyme release, and superoxide anion production have been determined. Analogue 1 is practically inactive as chemoattractant, highly active in the superoxide generation, and similar to the parent in the lysozyme release. The conformational restriction imposed on the backbone by the presence of the unsaturated residue is discussed in relation with the observed bioselectivity. © 1993 John Wiley & Sons, Inc.  相似文献   

12.
An Nα-protected model pentapeptide containing two consecutive ΔPhe residues, Boc-Leu-ΔPhe-ΔPhe-Ala-Phe-NHMe, has been synthesized by solution methods and fully characterized. 1H-nmr studies provided evidence for the occurrence of a significant population of a conformer having three consecutive, intramolecularly H-bonded β-bends in solution. The solid state structure has been determined by x-ray diffraction methods. The crystals grown from aqueous methanol are orthorhombic, space group P212121, a = 11.503(2), b = 16.554(2), c = 22.107(3) Å, V = 4209(1) Å,3 and Z = 4. The x-ray data were collected on a CAD4 diffractometer using CuKa radiation (λ = 1.5418 Å). The structure was determined using direct methods and refined by full-matrix least-squares procedure. The R factor is 5.3%. The molecule is characterized by a right handed 310-helical conformation (〈ϕ〉 = −68.2°, 〈ψ〉 = −26.3°), which is made up of two consecutive type III β-bends and one type I β-bend. In the solid state the helical molecules are aligned head-to-tail, thus forming long rod like structures. A comparison with other peptide structures containing consecutive ΔPhe residues is also provided. The present study confirms that the -ΔPhe-ΔPhe-sequence can be accommodated in helical structures. © 1997 John Wiley & Sons, Inc. Biopoly 42: 373–382, 1997  相似文献   

13.
A general method is presented for computing the atomic coordinates of helices in which a dipeptide is the repeating unit. The method will generate both single- and double-stranded model helices having idealized bond lengths and angles, and any arbitrary, user-specified, pitch and number of residues per turn. The variation of inter- and intrastrand hydrogen bonds with pitch and number of residues per turn can thus be examined. An application of the method is the construction of a β-helix having pitch of 6.3 Å per turn and 4.85 residues per turn, a model which can pack nicely into the unit cell of crystals of cation-bound gramicidin A.  相似文献   

14.
This study is an attempt to develop a simple search method for lead peptide candidates, which include constrained structures in a recognized sequence, using the design of a competitive inhibitor for HMG-CoA reductase (HMGR). A structure-functional analysis of previously synthesized peptides proposes that a competitive inhibitory peptide can be designed by maintaining bioactive conformation in a recognized sequence. A conformational aspect of the structure-based approach was applied to the peptide design. By analysis of the projections obtained through a principle component analysis (PCA) for short linear and cyclic peptides, a head-to-tail peptide cycle is considered as a model for its linear analogy. It is proposed that activities of the linear peptides based on an identical amino acid sequence, which are obtained from a less flexible peptide cycle, would be relatively higher than those obtained from more flexible cyclic peptides. The design criterion was formulated in terms of a 'V' parameter, reflecting a relative deviation of an individual peptide cycle from an average statistical peptide cycle based on all optimized structures of the cyclic peptides in set. Twelve peptide cycles were selected for the peptide library. Comparing the calculated 'V' parameters, two cyclic peptides (GLPTGG and GFPTGG) were selected as lead cycles from the library. Based on these sequences, six linear peptides obtained by breaking the cycle at different positions were selected as lead peptide candidates. The linear GFPTGG peptide, showing the highest inhibitory activity against HMGR, increases the inhibitory potency nearly tenfold. Kinetic analysis reveals that the GFPTGG peptide is a competitive inhibitor of HMG-CoA with an equilibrium constant of inhibitor binding (K(i)) of 6.4 +/- 0.3 microM. Conformational data support a conformation of the designed peptides close to the bioactive conformation of the previously synthesized active peptides.  相似文献   

15.
This study presents an approach that can be used to search for lead peptide candidates, including unconstrained structures in a recognized sequence. This approach was performed using the design of a competitive inhibitor for 3-hydroxy-3-methylglutaryl CoA reductase (HMGR). In a previous design for constrained peptides, a head-to-tail cyclic structure of peptide was used as a model of linear analog in searches for lead peptides with a structure close to an active conformation. Analysis of the conformational space occupied by the peptides suggests that an analogical approach can be applied for finding a lead peptide with an unconstrained structure in a recognized sequence via modeling a cycle using fixed residues of the peptide backbone. Using the space obtained by an analysis of the bioactive conformations of statins, eight cyclic peptides were selected for a peptide library based on the YVAE sequence as a recognized motif. For each cycle, the four models were assessed according to the design criterion ("V" parameter) applied for constrained peptides. Three cyclic peptides (FGYVAE, FPYVAE, and FFYVAE) were selected as lead cycles from the library. The linear FGYVAE peptide (IC(50) = 0.4 microM) showed a 1200-fold increase the inhibitory activity compared to the first isolated LPYP peptide (IC(50) = 484 microM) from soybean. Experimental analysis of the modeled peptide structures confirms the appropriateness of the proposed approach for the modeling of active conformations of peptides.  相似文献   

16.
The conformation of a tetrapeptide containing a dehydro amino acid, delta ZPhe, in its sequence has been determined in the crystalline state using X-ray crystallographic techniques. The tetrapeptide, Boc-Leu-delta ZPhe-Ala-Leu-OCH3, crystallizes in the orthorhombic space group P2(1)2(1)2(1) with four molecules in a unit cell of dimensions a = 11.655(1) A, b = 15.698(6) A and c = 18.651(3) A V = 3414.9 A and Dcalc = 1.12 g/cm-3. The asymmetric unit contains one tetrapeptide molecule, C30H46N4O7, a total of 41 nonhydrogen atoms. The structure was determined using the direct methods program SHELXS86 and refined to an R-factor of 0.049 for 3347 reflections (I3.0(I). The linear tetrapeptide in the crystal exhibits a double bend of the Type III-I, with Leu1 (phi = -54.1 degrees, psi = -34.5 degrees) and delta ZPhe2 (phi = -59.9 degrees, psi = -17.1 degrees) as the corner residues of Type III turn and delta ZPhe2 (phi = -59.9 degrees, psi = -17.1 degrees) and Ala3 (phi = -80.4 degrees, psi = 0.5 degrees) residues occupying the corners of Type I turn, with delta ZPhe as the common residue in the double bend. The turn structures are further stabilized by two intramolecular 4----1 type hydrogen bonds.  相似文献   

17.
The dehydro-residue containing peptides N-Ac-dehydro-Phe-L -Leu-OCH3 ( I ) and N-Ac-dehydro-Phe-NorVal-OCH3 ( II ) were synthesized by the usual workup procedures. The peptides crystallize from their solutions in methanol in space group P65: ( I ) a = b = 12.528(2) Å, c = 21.653(5) Å; ( II ) a = b = 12.532(2) Å, c = 21.695(4) Å. The structures were determined by direct methods. Both peptides adopt similar conformations with ?,ψ of dehydro-Phe as follows: ( I ) ?57.0(5)° and ?37.0(5)°; ( II ) ?56.0(5),° and ?37.5(5)°. The observed data on dehydro-Phe when placed at the (i + 1) position show that the ?,ψ values of dehydro-Phe are either ?60°, 140° or ?60°, ?30°. The conformation of ?60°, 140° can be accommodated only with a flexible residue at the (i + 2) position while the ?,ψ values of ?60°, ?30° are obtained with a bulky residue at the (i + 2) position as in the present structures. The molecules are packed in a helical way along the c axis. These are held by two strong intermolecular hydrogen bonds involving both NH as donors and acetyl group and dehydro-Phe oxygen atoms as acceptors. © 1994 John Wiley & Sons, Inc.  相似文献   

18.
Carlos Alemn 《Proteins》1997,29(4):575-582
Computer simulations have been used to design a polypeptide with a 310 helix conformation. The study has been been performed taking advantage of the intrinsic helix forming tendency of α-Aminoisobutyric acid. In order to avoid the formation of the α helix, which is the other common helical conformation adopted by α-Aminoisobutyric acid-based peptides, retropeptide bonds have been included in the sequence. Thus, retropeptides are not able to form the intramolecular hydrogen bonding interactions characteristic of the α helix. The influences of both the peptide length and the solvent have been examined and compared with those of the polypeptide without retropeptide bonds. Proteins 29:575–582,1997. © 1997 Wiley-Liss, Inc.  相似文献   

19.
The reactivity of cysteines following cluster destruction by iron chelation was investigated for [4Fe-4S]2+ and cubane [3Fe-4S]+ beef heart aconitase. When the chelator orthobathophenanthroline disulfonate was used, the formation of sulfur-sulfur bonds and the retention of inorganic sulfur from the cluster was observed. For both the 4Fe and 3Fe forms of aconitase, the two cysteines in peptide 7, the cysteine in peptide 3, and the cysteine in peptide 2 were found as the primary constituents of sulfur-sulfur bonds (the peptide sequences and nomenclature are from Plank, D. W., and Howard, J. B. (1988) J. Biol. Chem. 263, 8184-8189). Three of these four cysteines (peptides 3 and 7) correlated with those proposed to be cluster ligands recently determined by x-ray crystallography (Robbins, A. H. and Stout, C. D. (1989) Proteins, in press; Robbins, A. H., and Stout, C. D.,, (1989) Proc. Natl. Acad. Sci. U. S. A. 86, 3639-3643) for pig heart aconitase. A mechanism is proposed whereby the greater affinity of orthobathophenanthroline disulfonate for Fe2+ relative to Fe3+ shifts the equilibrium toward reduction of ferric iron through sulfur-sulfur bond formation at the cluster site. Aconitase which has been oxidized with ferricyanide and from which the cluster iron has been removed by EDTA has been shown to have two di- or polysulfides (Kennedy, M. C., and Beinert, H. (1988) J. Biol. Chem. 263, 8194-8198). The cysteines found in the sulfur-sulfur bonds generated by this treatment also were predominantly those from peptides 3 and 7. In addition, the putative thiol ligands for the linear [3Fe-4S]+ cluster of aconitase are reported. The four cysteines of peptides 7 and 9 (two in each peptide) were found to be protected by the cluster from alkylation when the protein was denatured. The difference in the ligands between the cubane and linear forms indicates that a specific thiol exchange occurs during the conversion.  相似文献   

20.
The preferred conformations of the active diuretic insect kinin pentapeptide analogue Phe-Phe-Aib-Trp-Gly-NH2 were studied using nmr spectroscopy and molecular modeling. Structure sets consistent with rotating frame nuclear Overhauser effect spectroscopy distance constraints obtained by restrained simulated annealing in vacuo indicate a predominant population of a type II beta-turn involving the Phe1-Trp4 region. An equilibrium between this type II and a type I beta-turn formed by residues Phe2 and Gly5 was observed in a 5 ns restrained molecular dynamics simulation using the implicit generalized Born solvent accessible surface area (GB/SA) solvation model. When subjected to 500 ps dynamics with explicit water both beta-turn folds were conserved throughout the simulations. The results obtained with implicit and explicit solvation models are compared, and their consistency with the nmr observations is discussed. The behavior of the linear pentapeptide in this study is in agreement with an earlier report on the consensus conformation of the insect kinin active core derived from analysis of cyclic active analogues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号