首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Calcium-dependence of somatostatin binding to receptors   总被引:1,自引:0,他引:1  
C Susini  J P Esteve  N Vaysse  A Ribet 《Peptides》1985,6(5):831-833
Binding of 125I-[Tyr11] somatostatin (S14) and 125I-[Tyr1]S14 has been studied in pancreatic acini and cerebral cortex. Ca2+-dependence of somatostatin binding to receptors was observed only with the highly non degradable iodinated analog 125I-[Tyr11] somatostatin but not with 125I-[Tyr1] somatostatin. The inhibitory activity of S14 on secretin-stimulated cAMP cellular content was decreased when Ca2+ concentration in the medium was reduced to 30 nM, indicating that the Ca2+ dependence of somatostatin binding to receptors is also present with the native peptide.  相似文献   

2.
A wide range of equilibrium and kinetic constants exist for the interaction of prothrombin and other coagulation factors with various model membranes from a variety of techniques. We have investigated the interaction of prothrombin with pure dioleoylphosphatidylcholine (DOPC) membranes and dioleoylphosphatidlyserine (DOPS)-containing membranes (DOPC:DOPS, 3:1) using surface plasmon resonance (SPR, with four different model membrane presentations) in addition to isotheral titration calorimetry (ITC, with suspensions of phospholipid vesicles) and ELISA methods. Using ITC, we found a simple low-affinity interaction with DOPC:DOPS membranes with a K D = 5.1 μM. However, ELISA methods using phospholipid bound to microtitre plates indicated a complex interaction with both DOPC:DOPS and DOPC membranes with K D values of 20 and 58 nM, respectively. An explanation for these discrepant results was developed from SPR studies. Using SPR with low levels of immobilised DOPC:DOPS, a high-affinity interaction with a K D of 18 nM was obtained. However, as phospholipid and prothrombin concentrations were increased, two distinct interactions could be discerned: (i) a kinetically slow, high-affinity interaction with K D in the 10?8 M range and (ii) a kinetically rapid, low-affinity interaction with K D in the 10?6 M range. This low affinity, rapidly equilibrating, interaction dominated in the presence of DOPS. Detailed SPR studies supported a heterogeneous binding model in agreement with ELISA data. The binding of prothrombin with phospholipid membranes is complex and the techniques used to measure binding will report K D values reflecting the mixture of complexes detected. Existing data suggest that the weaker rapid interaction between prothrombin and membranes is the most important in vivo when considering the activation of prothrombin at the cell surface.  相似文献   

3.
A S Verkman 《Biochemistry》1987,26(13):4050-4056
The physicochemical mechanism for merocyanine 540 (M540) binding to unilamellar phosphatidylcholine (PC) vesicles was examined by steady-state and dynamic fluorescence and fluorescence stopped-flow methods. At 530-nm excitation, aqueous M540 has an emission peak at 565 nm, which red shifts to 580 nm with formation of membrane-bound monomers (M); bound dimers (D) are nonfluorescent. Equilibrium fluorescence titrations show that 50% of total M540 partitions into the membrane to form D at [M540]/[PC] (Rm/p)_approximately 0.6. M and D concentrations are equal at Rm/p approximately 0.05. For Rm/p less than 0.1, M540 has a single fluorescence lifetime (tau), which decreases with Rm/p [tau-1 (ns-1) = 0.48 + 3.3Rm/p], indicating a rapid collisional rate between M to form D. Dynamic depolarization studies show that hindered rotation of M (r infinity = 0.13 at Rm/p = 0.006) becomes more rapid (rotational rate 0.2-1.9 ns-1) with increasing Rm/p (0.006-0.075). The efficiencies of energy transfer between n-(9-anthroyloxy) fatty acid probes (n = 2, 6, 9, 12, 16) and bound M540 suggest that M is oriented parallel to the phospholipids near the membrane surface; studies of efficiencies of n-AF quenching by D are consistent with an orientation of D perpendicular to the phospholipids. In stopped-flow fluorescence measurements in which M540 is mixed with PC vesicles, there is a rapid (1 ms) followed by a slower (10-50 ms) concentration-dependent fluorescence increase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
A number of studies have suggested that the anionic phospholipid (anPL)-binding protein annexin II may play a role in cytomegalovirus (CMV) infection. Since annexin II has been shown to mediate aggregation and fusion of certain membranes, we investigated whether these properties could be exploited by CMV directly. The experiments showed that purified annexin II, but not the homologous protein annexin V (AnV), can mediate the binding of 35S-CMV (strain AD169) to anPL-coated microtiter wells. This association required Ca2+, could be titrated by varying either annexin II (apparent Kd = 4 x 10(-)8 M) or 35S-CMV, was inhibited by unlabeled CMV, and was observed for the heterotetrameric or monomeric form of annexin II. In experiments utilizing the fluorescence dequenching of octadecyl rhodamine incorporated into the CMV envelope, annexin II was furthermore found to enhance the rate of virus-anPL vesicle fusion. The observed fusion was dependent on the concentration of annexin II, Ca2+, and anPL and was mediated principally by the heterotetramer. Interestingly, AnV was observed to inhibit the effects of annexin II on CMV fusion but not binding to anPL, which indicates that annexin II enhances these processes by distinct mechanisms. The results presented here provide the first direct evidence that annexin II has the capacity to bridge CMV to a phospholipid membrane and to enhance virus-membrane fusion. These observations furthermore suggest that AnV may regulate the fusogenic function of annexin II.  相似文献   

5.
6.
It has been hypothesized that nonspecific reversible binding of cytoskeletal proteins to lipids in cells may guide their binding to integral membrane anchor proteins. In a model system, we measured desorption rates k(off) (off-rates) of the erythrocyte cytoskeletal proteins spectrin and protein 4.1 labeled with carboxyfluorescein (CF), at two different compositions of planar phospholipid membranes (supported on glass), using the total internal reflection/fluorescence recovery after photobleaching (TIR/FRAP) technique. The lipid membranes consisted of either pure phosphatidylcholine (PC) or a 3:1 mixture of PC with phosphatidylserine (PS). In general, the off-rates were not single exponentials and were fit to a combination of fast, slow, and irreversible fractions, reported both separately and as a weighted average. By a variation of TIR/FRAP, we also measured equilibrium affinities (the ratio of surface-bound to bulk protein concentration) and thereby calculated on-rates, k(on). The average off-rate of CF-4.1 from PC/PS (approximately 0.008/s) is much slower than that from pure PC (approximately 1.7/s). Despite the consequent increase in equilibrium affinity at PC/PS, the on-rate at PC/PS is also substantially decreased (by a factor of 40) relative to that at pure PC. The simultaneous presence of (unlabeled) spectrin tends to substantially decrease the on-rate (and the affinity) of CF-4.1 at both membrane types. Similar experiments for CF-spectrin alone showed much less sensitivity to membrane type and generally faster off-rates than those exhibited by CF-4.1. However, when mixed with (unlabeled) 4.1, both the on-rate and off-rate of CF-spectrin decreased drastically at PC/PS (but not PC), leading to a somewhat increased affinity. Clearly, changes in affinity often involve countervailing changes in both on-rates and off-rates. In many of these studies, the effect of varying ionic strength and bulk concentrations was examined; it appears that the binding is an electrostatic attraction and is far from saturation at the concentrations employed. These results and the techniques implemented carry general implications for understanding the functional role of nonspecific protein binding to cellular lipid membranes.  相似文献   

7.
Abstract

Golgi-Associated Plant Pathogenesis-Related protein 1 (GAPR-1) is a mammalian protein that belongs to the superfamily of plant pathogenesis-related proteins group 1 (PR-1). GAPR-1 strongly associates with lipid rafts at the cytosolic leaflet of the Golgi membrane. The myristoyl moiety at the N-terminus of GAPR-1 contributes to membrane binding but is not sufficient for stable membrane anchorage. GAPR-1 is positively charged at physiological pH, which allows for additional membrane interactions with proteins or lipids. To determine the potential contribution of lipids to membrane binding of GAPR-1, we used a liposome binding assay. Here we report that non-myristoylated GAPR-1 stably binds liposomes that contain the negatively charged lipids phosphatidylserine, phosphatidylglycerol, phosphatidylinositol, or phosphatidic acid. GAPR-1 displays the highest preference for phosphatidic acid-containing liposomes. In contrast, lysozyme, which contains a similar surface charge, did not bind to these liposomes, except for a weak membrane association with PA-containing liposomes. Interestingly, GAPR-1 binds to phosphatidylinositol with unusual characteristics. Denaturation or organic extraction of GAPR-1 does not result in dissociation of phosphatidylinositol from GAPR-1. The association of phosphatidylinositol with GAPR-1 results in a diffuse gel-shift in SDS-PAGE. Mass spectrometric analysis of gel-shifted GAPR-1 showed the association of up to 3 molecules of phosphatidylinositol with GAPR-1. These results suggest that the lipid composition contributes to the GAPR-1 binding to biological membranes.  相似文献   

8.
9.
Binding of the cationic tetra(tributylammoniomethyl)-substituted hydroxoaluminum phthalocyanine (AlPcN4) to bilayer lipid membranes was studied by fluorescence correlation spectroscopy (FCS) and intramembrane field compensation (IFC) methods. With neutral phosphatidylcholine membranes, AlPcN4 appeared to bind more effectively than the negatively charged tetrasulfonated aluminum phthalocyanine (AlPcS4), which was attributed to the enhancement of the coordination interaction of aluminum with the phosphate moiety of phosphatidylcholine by the electric field created by positively charged groups of AlPcN4. The inhibitory effect of fluoride ions on the membrane binding of both AlPcN4 and AlPcS4 supported the essential role of aluminum-phosphate coordination in the interaction of these phthalocyanines with phospholipids. The presence of negative or positive charges on the surface of lipid membranes modulated the binding of AlPcN4 and AlPcS4 in accord with the character (attraction or repulsion) of the electrostatic interaction, thus showing the significant contribution of the latter to the phthalocyanine adsorption on lipid bilayers. The data on the photodynamic activity of AlPcN4 and AlPcS4 as measured by sensitized photoinactivation of gramicidin channels in bilayer lipid membranes correlated well with the binding data obtained by FCS and IFC techniques. The reduced photodynamic activity of AlPcN4 with neutral membranes violating this correlation was attributed to the concentration quenching of singlet excited states as proved by the data on the AlPcN4 fluorescence quenching.  相似文献   

10.
Photosensitized efficacy of tetrasulfonated phthalocyanines of zinc, aluminum and nickel (ZnPcS(4), AlPcS(4) and NiPcS(4), respectively) as studied by gramicidin channel (gA) photoinactivation was compared with adsorption of the dyes on the surface of a bilayer lipid membrane as measured by the inner field compensation method. The adsorption of the negatively charged phthalocyanines on diphytanoylphosphatidylcholine (DPhPC) membranes led to formation of a negative boundary potential difference between the membrane/water interfaces. Good correlation was shown between the photodynamic activity and the membrane binding of the three metallophthalocyanines. ZnPcS(4) appeared to be the most potent of these photosensitizers, while NiPcS(4) was completely ineffective. All of these phthalocyanines displayed no binding and negligible gA photoinactivation with membranes formed of glycerol monooleate (GMO), whereas Rose Bengal exhibited significant binding and photodynamic efficacy with GMO membranes. Gramicidin photoinactivation in the presence of AlPcS(4), being insensitive to the ionic strength of the bathing solution, was inhibited by fluoride and attenuated by phosphate ions. A blue shift of the fluorescence peak position of ZnPcS(4) dissolved in ethanol was elicited by phosphate, similarly to fluoride, which was indicative of the coordination interaction of these ions with the central metal atom of the phthalocyanine macrocycle. This interaction was enhanced in the medium modeling the water-membrane interface. The results obtained imply that binding of tetrasulfonated metallophthalocyanines to phospholipid membranes is determined primarily by metal-phosphate coordination.  相似文献   

11.
Photosensitized efficacy of tetrasulfonated phthalocyanines of zinc, aluminum and nickel (ZnPcS4, AlPcS4 and NiPcS4, respectively) as studied by gramicidin channel (gA) photoinactivation was compared with adsorption of the dyes on the surface of a bilayer lipid membrane as measured by the inner field compensation method. The adsorption of the negatively charged phthalocyanines on diphytanoylphosphatidylcholine (DPhPC) membranes led to formation of a negative boundary potential difference between the membrane/water interfaces. Good correlation was shown between the photodynamic activity and the membrane binding of the three metallophthalocyanines. ZnPcS4 appeared to be the most potent of these photosensitizers, while NiPcS4 was completely ineffective. All of these phthalocyanines displayed no binding and negligible gA photoinactivation with membranes formed of glycerol monooleate (GMO), whereas Rose Bengal exhibited significant binding and photodynamic efficacy with GMO membranes. Gramicidin photoinactivation in the presence of AlPcS4, being insensitive to the ionic strength of the bathing solution, was inhibited by fluoride and attenuated by phosphate ions. A blue shift of the fluorescence peak position of ZnPcS4 dissolved in ethanol was elicited by phosphate, similarly to fluoride, which was indicative of the coordination interaction of these ions with the central metal atom of the phthalocyanine macrocycle. This interaction was enhanced in the medium modeling the water-membrane interface. The results obtained imply that binding of tetrasulfonated metallophthalocyanines to phospholipid membranes is determined primarily by metal-phosphate coordination.  相似文献   

12.
Binding of the cationic tetra(tributylammoniomethyl)-substituted hydroxoaluminum phthalocyanine (AlPcN(4)) to bilayer lipid membranes was studied by fluorescence correlation spectroscopy (FCS) and intramembrane field compensation (IFC) methods. With neutral phosphatidylcholine membranes, AlPcN(4) appeared to bind more effectively than the negatively charged tetrasulfonated aluminum phthalocyanine (AlPcS(4)), which was attributed to the enhancement of the coordination interaction of aluminum with the phosphate moiety of phosphatidylcholine by the electric field created by positively charged groups of AlPcN(4). The inhibitory effect of fluoride ions on the membrane binding of both AlPcN(4) and AlPcS(4) supported the essential role of aluminum-phosphate coordination in the interaction of these phthalocyanines with phospholipids. The presence of negative or positive charges on the surface of lipid membranes modulated the binding of AlPcN(4) and AlPcS(4) in accord with the character (attraction or repulsion) of the electrostatic interaction, thus showing the significant contribution of the latter to the phthalocyanine adsorption on lipid bilayers. The data on the photodynamic activity of AlPcN(4) and AlPcS(4) as measured by sensitized photoinactivation of gramicidin channels in bilayer lipid membranes correlated well with the binding data obtained by FCS and IFC techniques. The reduced photodynamic activity of AlPcN(4) with neutral membranes violating this correlation was attributed to the concentration quenching of singlet excited states as proved by the data on the AlPcN(4) fluorescence quenching.  相似文献   

13.
The first step in the fusion of two phospholipid membranes culminates in the aggregation of the two lipid bilayers. We have used a custom-built fluorimeter to detect multilamellar vesicles (liposomes) containing the fluorescent dye, 6-carboxyfluorescein (6-CF), bound to a planar lipid bilayer (BLM). Liposomes were added to one side of the BLM, and unbound vesicles were perfused out. This left a residual fluorescence from the BLM, but only when the membranes contained anionic lipids, and then only when millimolar levels of calcium were present. This residual fluorescence was consistently detected only when calcium was included in the buffer during the perfusion. This residual fluorescence originated from liposomes bound to the BLM. Breaking the BLM or lysing the adsorbed vesicles with distilled water abolished it. free 6-CF and/or calcium in the absence of liposomes resulted in no residual fluorescence. No residual fluorescence was detected when both the liposomes and the BLM were composed entirely of zwitterionic lipids. This was found to result from the insensitivity of the fluorimeter to a small number of liposomes adsorbed to the BLM. For this system, we conclude that calcium is necessary for both the initiation and maintenance of the state in which the vesicle membrane is bound to the planar bilayer when the membranes contain negatively charged lipids. This attachment is stronger than the interaction between zwitterionic membranes.  相似文献   

14.
15.
Antiphospholipid antibodies interact with phospholipid membranes via lipid binding plasma proteins, mostly, prothrombin and beta(2)-glycoprotein I. Using ellipsometry, we characterized prothrombin-mediated binding of lupus anticoagulant (LA) positive IgG, isolated from patients with antiphospholipid syndrome, to phosphatidylserine (PS)-containing membranes. LA IgG did not bind to membranes in the absence of prothrombin, but addition of prothrombin resulted in high-affinity binding of prothrombin-LA IgG complexes; half-maximal binding was attained at IgG and prothrombin concentrations of 10 microg/mL and 4 nM, respectively. Adsorption to membranes containing 10-40 mol % PS revealed that membrane-bound rather than solution-phase prothrombin determines the adsorption kinetics. Depletion of prothrombin and LA IgG from the solution results in rapid desorption which is strongly inhibited by addition of prothrombin but not of LA IgG. Prothrombin-mediated adsorption of monovalent Fab1 fragments prepared from patient LA IgG was negligible, indicating that monovalent interaction between prothrombin and LA IgG is weak. The kinetics of adsorption and desorption indicate that divalent binding of LA IgG to prothrombin at the lipid membrane occurs.  相似文献   

16.
Tocopherols (vitamin E) located in the hydrophobic domains of biological membranes act as chain breaking antioxidants preventing the propagation of free radical reactions of lipid peroxidation. The naturally occurring form, d-alpha tocopherol is an exquisite molecule in that it is intercalated in the membrane in such a way that the hydrophobic tail anchors the molecule positioning the chromanol ring containing the hydroxyl group, which is the essence of its antioxidant function, at the polar hydrocarbon interface of phospholipid membranes. The interaction of this group with water soluble substances is not very well understood. In the present study, an investigation was made of the interaction of ascorbate and ferrous ions (Fe+2) initiators of lipid peroxidation with alpha tocopherol. The results show that tocopherol increases membrane associated iron. The formation of a tocopherol iron complex in the presence of phospholipid liposomes and ascorbate in its reduced form is indicated. These results suggest a new way in which tocopherols act to inhibit lipid peroxidation.  相似文献   

17.
Adsorption of ruthenium red to phospholipid membranes.   总被引:1,自引:0,他引:1       下载免费PDF全文
We have measured the distribution of the hexavalent ruthenium red cation (RuR) between water and phospholipid membranes, have shown the critical importance of membrane negative surface charge for RuR binding, and determined the association constant of RuR for different phospholipid bilayers. The studies were performed with liposomes made of mixtures of zwitterionic L-alpha-phosphatidylcholine (PC), and one of the negatively charged phospholipids: L-alpha-phosphatidylserine (PS), L-alpha-phosphatidylinositol (PI), or L-alpha-phosphatidylglycerol (PG). Lipid composition of PC:PX membranes was 1:0, 19:1, 9:1, and 4:1. Liposomes were processed using freeze-and-thaw treatment, and their size distribution was characterized by light scattering and electron microscopy. Experimental distribution isotherms of RuR obtained by ultracentrifugation and spectrophotometry can be reproduced with the Langmuir-Stern-Grahame model, assuming that RuR behaves in the diffuse double layer as an ion with effective valency < 6. In terms of this model, PC-PS, PC-PI, and PC-PG membranes were found to be electrostatically equivalent and the intrinsic association constants of RuR were obtained. RuR has highest affinity to PS-containing membranes; its association constant for PC-PI and PC-PG membranes is about 5 times smaller than that for PC-PS membranes. From the comparison of RuR binding to mixed negatively charged phospholipid membranes and RuR binding to sarcoplasmic reticulum (SR), we conclude that the low-affinity RuR binding sites may indeed be associated with the lipid bilayer of SR.  相似文献   

18.
The binding of 1-anilino-8-naphthalenesulfonate (ANS) to dipalmitoyl-phosphatidycholine (DPPC)-sonicated vesicles was measured by a fluorimetric method in the vicinity of the gel-to-liquid crystalline phase transition temperature (Tm). A similar measurement was performed on large multimellar DPPC vesicles through equilibrium dialysis. Both measurements demonstrated anomalous dye binding in the temperature region of the Tm and slightly above (prefreezing region). The amount of ANS bound at this temperature region was in excess of what would be expected based on extrapolation of the high temperature binding data; just below the Tm, the amount of bound dye decreased abruptly. The fluorimetric studies on vesicles also indicated that inner monolayer binding of ANS was markedly inhibited below the Tm. The possibility that the increase in bound dye in the prefreezing region was caused by enhanced lateral compressibility, density fluctuations, or additional binding sites at the boundary of transient gel-like clusters is discussed and the general topic of anomalous increases in various membrane processes in the vicinity of a phase transition is briefly reviewed.  相似文献   

19.
Abraham T  Lewis RN  Hodges RS  McElhaney RN 《Biochemistry》2005,44(33):11279-11285
The binding of the amphiphilic, positively charged, cyclic beta-sheet antimicrobial decapeptide gramicidin S (GS) to various lipid bilayer model membrane systems was studied by isothermal titration calorimetry. Large unilamellar vesicles composed of the zwitterionic phospholipid 1-palmitoyl-2-oleoylphosphatidylcholine or the anionic phospholipid 1-palmitoyl-2-oleoylphosphatidylglycerol, or a binary mixture of the two, with or without cholesterol, were used to mimic the lipid compositions of the outer monolayers of the lipid bilayers of mammalian and bacterial membranes, respectively. Dynamic light scattering results suggest the absence of major alterations in vesicle size or appreciable vesicle fusion upon the binding of GS to the lipid vesicles under our experimental conditions. The binding isotherms can be reasonably well described by a one-site binding model. GS is found to bind with higher affinity to anionic phosphatidylglycerol than to zwitterionic phosphatidylcholine vesicles, indicating that electrostatic interactions in the former system facilitate peptide binding. However, the presence of cholesterol reduced binding only slightly, indicating that the binding of GS is not highly sensitive to the order of the phospholipid bilayer system. Similarly, the measured positive endothermic binding enthalpy (DeltaH) varies only modestly (2.6 to 4.4 kcal/mol), and the negative free energy of binding (DeltaG) also remains relatively constant (-10.9 to -12.1 kcal/mol). The relatively large but invariant positive binding entropy, reflected in relatively large TDeltaS values (13.4 to 16.4 kcal/mol), indicates that GS binding to phospholipid bilayers is primarily entropy driven. Finally, the relative binding affinities of GS for various phospholipid vesicles correlate relatively well with the relative lipid specificity for GS interactions with bacterial and erythrocyte membranes observed in vivo.  相似文献   

20.
Cellular retinol-binding proteins types I and II (CRBP-I and CRBP-II) are known to differentially facilitate retinoid metabolism by several membrane-associated enzymes. The mechanism of ligand transfer to phospholipid small unilamellar vesicles was compared in order to determine whether differences in ligand trafficking properties could underlie these functional differences. Unidirectional transfer of retinol from the CRBPs to membranes was monitored by following the increase in intrinsic protein fluorescence that occurs upon ligand dissociation. The results showed that ligand transfer of retinol from CRBP-I was >5-fold faster than transfer from CRBP-II. For both proteins, transfer of the other naturally occurring retinoid, retinaldehyde, was 4-5-fold faster than transfer of retinol. Rates of ligand transfer from CRBP-I to small unilamellar vesicles increased with increasing concentration of acceptor membrane and with the incorporation of the anionic lipids cardiolipin or phosphatidylserine into membranes. In contrast, transfer from CRBP-II was unaffected by either membrane concentration or composition. Preincubation of anionic vesicles with CRBP-I was able to prevent cytochrome c, a peripheral membrane protein, from binding, whereas CRBP-II was ineffective. In addition, monolayer exclusion experiments demonstrated differences in the rate and magnitude of the CRBP interactions with phospholipid membranes. These results suggest that the mechanisms of ligand transfer from CRBP-I and CRBP-II to membranes are markedly different as follows: transfer from CRBP-I may involve and require effective collisional interactions with membranes, whereas a diffusional process primarily mediates transfer from CRBP-II. These differences may help account for their distinct functional roles in the modulation of intracellular retinoid metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号