首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Good results have been obtained with use of the new bonded chiral stationary phase Whelk-O 1 in analytical and preparative subcritical fluid chromatography. A wide variety of enantiomeric pairs of compounds with different functional groups that are of pharmaceutical and biological interest have been resolved. This Pirkle-concept CSP appears to be more rugged than cellulosic phases (e.g., Chiralcel) with regards to solvents and pressure. In comparing the usefulness of the column for SFC versus HPLC chiral analysis, we have observed a clear superiority of SFC in terms of higher speed and efficiency of analysis, and faster method development. This is consistent with our experience with Chiralcel CSPs. With the Whelk-O 1 we have shown that the effects of temperature and modifier on SFC separations are similar to what has been reported for most other CSPs. We also observed a unique selectivity advantage of SFC for verapamil. We had good success with using a 1-in. diameter column packed with Whelk-O 1 to perform preparative SFC separations of a number of enantiomeric mixtures. The advantages of preparative SFC over preparative HPLC will be discussed. The feasibility of preparative SFC is dependent on how well we meet the practical challenges such as sample introduction issues, special hardware requirements due to the high pressure, and fraction collection issues. © 1994 Wiley-Liss, Inc.  相似文献   

2.
    
Separation of enantiomers of a thiazolbenzenesulfonamide compound was performed on a Chiralpak AD column using subcritical fluid chromatography. Effects of alcohol modifier and temperature on the separations were studied. The results revealed that while the main adsorbing interactions were between the hydroxyl group of the analyte and the carbamate group of the stationary phase, chiral discrimination was achieved through an inclusion mechanism within the chiral cavity created along the amylose chains. Analogs and synthetic precursors of the thiazolbenzenesulfonamide studied were also investigated so as to understand the effect of functional groups and configuration of the analyte molecule upon chiral recognition.  相似文献   

3.
    
A strategy for the preparation of enantiomerically pure (R)- and (S)-alpha-methyldiphenylalanine, constrained phenylalanine analogs, is described. A racemic precursor was prepared in high yield from easily available starting products and subjected to HPLC resolution on a noncommercial chiral stationary phase. More than 600 mg of each enantiomer was isolated in optically pure form by using a 150 x 20 mm ID column containing mixed 10-undecenoate/3,5-dimethylphenylcarbamate of cellulose covalently bonded to allylsilica gel and a mixture of n-hexane/2-propanol/acetone as the mobile phase.  相似文献   

4.
    
Hsu LC  Kim H  Yang X  Ross D 《Chirality》2011,23(4):361-366
There are several approaches to produce enantiomerically pure drug substances, such as recrystallization, catalytic process (ligand and enzyme), indirect chromatographic resolution, and direct chromatographic resolution. However, the use of preparative chromatography with chiral stationary phases seems to be most effective for early phase projects, where the time and resources on the developments need to be minimized to get the drug candidates into the clinical studies. We showed that by following a well-defined process, chiral chromatography can be easily scaled up from an analytical system to a pilot plant system. We also used the results from a multicolumn continuous chromatography (MCC) study to conclude that MCC can be a cost-effective production method for chiral manufacturing.  相似文献   

5.
In conglomerates, each single crystal contains only one of the two possible enantiomeric forms--either dextrorotatory or levorotatory. The analysis of a single crystal by liquid chromatography on chiral support associated with chiroptical detection is a very efficient tool to reveal the occurrence of a conglomerate. In terms of rapidity and easiness, this method compares favorably with the classical methods used to show this occurrence. Two examples are provided.  相似文献   

6.
    
Racemic ethyl 2,3-dibromopropionate, commercially available at low price, is a key intermediate used in the synthesis of several heterocycle fragments, which are present in many biologically active compounds. Surprisingly, the enantiomers are not commercially available and have never been described in the literature. In this work, we undertook two different strategies to obtain these enantiomers, which are enantioselective synthesis and preparative HPLC enantioseparation of commercially available racemate on multigram scale. The first strategy has proved inadequate because racemization occurred during the synthesis (ee ≈ 9-50%). Conversely, the second strategy produced a very good enantioseparation of commercially available racemate (ee > 99.5% for both enantiomers) on multigram scale.  相似文献   

7.
    
Welch CJ  Kress MH  Beconi M  Mathre DJ 《Chirality》2003,15(2):143-147
The enantiomers of the stereolabile peroxisome proliferator-activated receptor (PPAR) agonist, 1, were isolated by preparative chiral chromatography and their absolute configuration established using a combination of chromatographic and NMR methods. Enantiomer interconversion was investigated under a variety of conditions, with rapid racemization being observed in most solvents, including all aqueous systems studied, irrespective of pH. Rapid racemization in both dog and human plasma was confirmed by chiral HPLC with MS detection.  相似文献   

8.
    
《Chirality》2017,29(8):430-442
Six chiral derivatives of xanthones (CDXs) were covalently bonded to silica, yielding the corresponding xanthonic chiral stationary phases (XCSPs). The new XCSPs were packed into stainless‐steel columns with 150 x 4.6 mm i.d. Moreover, the greening of the chromatographic analysis by reducing the internal diameter (150 x 2.1 mm i.d.) of the liquid chromatography (LC) columns was also investigated. The enantioselective capability of these phases was evaluated by LC using different chemical classes of chiral compounds, including several types of drugs. A library of CDXs was evaluated in order to explore the principle of reciprocity as well as the chiral self‐recognition phenomenon. The separation of enantiomeric mixtures of CDXs was investigated under multimodal elution conditions. The XCSPs provided high specificity for the enantiomeric mixtures of CDXs evaluated mainly under normal‐phase elution conditions. Furthermore, two XCSPs were prepared with both enantiomers of the same xanthonic selector in order to confirm the inversion order elution.  相似文献   

9.
A β-cyclodextrin bonded stationary phase was employed for the enantioresolution of propranolol and several analogues in conjunction with various polar organic mobile phases. The effects of structural alterations in the non-polar regions of the analytes were found to exert profound changes upon chiral resolution and capacity values, indicating that features which cannot hydrogen-bond with the cyclodextrin molecule still play an important role in this chiral recognition process. This was linked to a repulsive steric effect facilitating the necessary conditions for chiral resolution. The degree of ionization of the analytes and the type and concentration of organic modifier used were also seen to influence the analytes1 enantio-selectivity and capacity values. © 1996 Wiley-Liss, Inc.  相似文献   

10.
The separation of tryptophan enantiomers was carried out with medium-pressure liquid chromatography using BSA (bovine serum albumin)-bonded silica as a chiral stationary phase. The influence of various experimental factors such as pH and ionic strength of mobile phase, separation temperature, and the presence of organic additives on the resolution was studied. In order to expand this system to preparative scale, the loadability of sample and the stability of stationary phase for repeated use were also examined. The separation of tryptophan enantiomers was successful with this system. The data indicated that a higher separation factor (α) was obtained at a higher pH and lower temperature and ionic strength in mobile phase. Addition of organic additives (acetonitrile and 2-propanol) in mobile phase contributed to reduce the retention time of L-tryptophan. About 30% of the separation factor was reduced after 80 days of repeated use.  相似文献   

11.
    
Professor William H. Pirkle (1934–2018) made a profound impact on modern chemistry by inventing and popularizing widely used techniques for the analysis and purification of enantiomers, contributions that paved the way for the subsequent advances in the discovery, development, and manufacture of enantiopure pharmaceuticals, agrochemicals, and specialty chemicals. Pirkle's pioneering 1966 demonstration of the use of chiral solvating agents for the nuclear magnetic resonance determination of enantiopurity led to a lifelong interest in understanding the supramolecular interactions responsible for enantiodifferentiation. Ongoing research into the chromatographic resolution of stereoisomers throughout the 1970s led in 1981 to the very first commercialization of a chiral stationary phase for the high-performance liquid chromatography (HPLC) separation of enantiomers. The availability of this and subsequent “Pirkle columns” had a deep and lasting impact, becoming widely embraced by the chemical sciences research community worldwide and spearheading the wholesale changeover to HPLC as the preferred technique for measuring enantiopurity. Doc Pirkle was a highly creative, independent, and fun-loving collaborator whose circle of friends extends around the globe. His research group at the University of Illinois, often referred to as The Pirkle Zoo, became a refuge for an interesting assembly of characters who flourished under his mentorship and guidance.  相似文献   

12.
    
A new chiral stationary phase (CSP) based on macrocyclic amide receptor was prepared starting from (1R,2R)‐1,2‐diphenylethylenediamine. The new CSP was successfully applied to the resolution of various N‐(substituted benzoyl)‐α‐amino amides with reasonably good separation factors and resolutions (α = 1.75 ~ 2.97 and RS = 2.89 ~ 6.82 for 16 analytes). The new CSP was also applied to the resolution of 3‐substituted 1,4‐benzodiazepin‐2‐ones and some diuretic chiral drugs including bendroflumethiazide and methylchlothiazide and metolazone. The resolution results for 3‐substituted 1,4‐benzodiazepin‐2‐ones and some diuretic chiral drugs were also reasonably good. Chirality 28:253–258, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

13.
    
Umesh Ingle  Arvind Lali 《Chirality》2020,32(11):1324-1335
Development of preparative methods for the isolation of chiral molecules has been considered challenging by conventional unit operations due to their identical physical and chemical properties. This has evolved chiral stationary phases for the separation of chiral components using chromatography technique. However, separation method using chiral adsorbents requires high pressure, are expensive, and have low productivity. Generation of bulk quantities purified nebivolols using the available high pressure chiral separation methods is impractical and operating cost-intensive. Thus, there is a need to develop economical methods using nonchiral adsorbents for the purification of nebivolols or similar active ingredients. The present work demonstrates a unique and scalable tandem two-column method for the separation of isomers of nebivolol using inexpensive reverse phase adsorbents. The first column of the scheme causes removal of charged and nonisomeric impurities whereas tandem operation of second column increases resolution of d-nebivolol and l-nebivolol. The maximization of separation due to tandem operation of second column causes enhancement of the throughput of the process. The developed preparative process produces >98% purity of both d-nebivolol and l-nebivolol with overall loading capacity of 56 g (L of adsorbent)−1 and productivity of 20 g L−1 day−1.  相似文献   

14.
    
Work from this paper details a novel walk‐up open‐access (OA) approach to enable chiral analytical method development and preparative separation of enantiomers in early discovery chemistry using supercritical fluid chromatography (SFC). We have demonstrated the success of this OA approach using immobilized chiral stationary phases (CSPs). After screening a diverse set of racemic drug candidates, we have concluded that a simplified OA chiral SFC platform can successfully purify approximately 60% of the analysed racemates. This streamlined OA workflow enables medicinal chemists with limited expertise in chiral method development to successfully and rapidly purify enantiomers for their projects using Waters UPC2 and Prep100‐SFC instrumentation.  相似文献   

15.
    
Valacyclovir, a potential prodrug for the treatment of patients with herpes simplex and herpes zoster, and its analogs were resolved on two chiral stationary phases (CSPs) based on (3,3’‐diphenyl‐1,1’‐binaphthyl)‐20‐crown‐6 covalently bonded to silica gel. In order to find out an appropriate mobile phase condition, various mobile phases consisting of various organic modifiers in water containing various acidic modifiers were applied to the resolution of valacyclovir and its analogs. When 30% acetonitrile in water containing any of 0.05 M, 0.10 M, or 0.15 M perchloric acid was used as a mobile phase, valacyclovir and its analogs were resolved quite well on the two CSPs with the separation factors (α) in the range of 2.49 ~ 6.35 and resolutions (RS) in the range of 2.95 ~ 12.21. Between the two CSPs, the CSP containing residual silanol protecting n‐octyl groups on the silica surface was found to be better than the CSP containing residual silanol groups. Chirality 27:268–273, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

16.
    
Yan TQ  Orihuela C  Swanson D 《Chirality》2008,20(2):139-146
This article discusses the chromatographic resolution of a racemic pharmaceutical intermediate. Preparative batch high performance liquid chromatography (HPLC), supercritical fluid chromatography (SFC), steady-state recycling (SSR), and simulated moving bed (SMB) were used to resolve a total of 12.2 kg of a racemic pharmaceutical intermediate. In this study, a first batch of 0.8 kg of racemate was separated on the preparative batch HPLC and SFC, and subsequently another 5.9 kg of racemate was separated on the SSR. Lastly, a third batch of 5.5 kg was separated on the SMB. The separation conditions and results of these techniques are discussed. The productivities and solvent costs of SFC versus HPLC are compared. The productivities and solvent costs of SMB, SSR, and HPLC are also compared. The analytical method development and process optimization of these processes are also discussed in this article.  相似文献   

17.
Racemic 5,5-dialkyl hydantoins derived from ketones are resolved by preparative liquid chromatography as the diastereomeric 1-carboxamide derivatives afforded by the reaction with optically pure configurationally known α-phenylethyl isocyanate. Hydrolysis of the resolved diastereomers affords α-substituted α-amino acids of high enantiomeric purity. The synthetic route is short, overall yields are high, and the absolute configuration of the amino acid enantiomers may be deduced from the chromatographic and NMR properties of the diastereomers. © 1992 Wiley-Liss, Inc.  相似文献   

18.
    
Chiralpak IA adsorbent is used for both analytical and preparative chromatographic separation of nadolol stereoisomers. The results include a complete screening of the mobile phase composition for both the baseline resolution of all four nadolol stereoisomers (analytical separation) and the simulated moving bed (SMB) pseudo‐binary separation of the most retained stereoisomer. The experimental results show that analytical baseline resolution of nadolol stereoisomers can be achieved using alcohol/hydrocarbon and alcohol/acetonitrile solvent mixtures. The 10%ethanol/90%acetonitrile mixture is presented as the one that presents baseline resolution with lower retention. For the preparative pseudo‐binary separation, pure ethanol, pure methanol, alcohol/acetonitrile, and alcohol/tetrahydrofuran mixtures proved to allow good separation results. The 100%methanol/0.1%diethylamine solvent composition was selected to perform the experimental SMB separation. Using a 10 g/L total feed concentration, the more retained stereoisomer was recovered at the extract outlet stream with 99.5% purity, obtaining a system productivity of 1.98 gL?1 h?1 and requiring a solvent consumption of 3.13 L/g of product. Comparing these results with the ones recently presented by Ribeiro et al. (2013), this work shows that the Chiralpak IA chiral adsorbent is an interesting alternative to Chiralpak AD for the separation of nadolol stereoisomers at both analytical and preparative scales. Chirality 28:399–408, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

19.
    
The graphene oxide (GO) was covalently coupled to the surfaces of silica gel (SiO2) microspheres by amide bond to get the graphene oxide@silica gel (GO@SiO2). Then, the GO@SiO2 was reduced with hydrazine to the reduced graphene oxide@silica gel (rGO@SiO2), and the cellulose derivatives were physically coated on the surfaces of rGO@SiO2 to prepare a chiral stationary phase (CSP) for high performance liquid chromatography. Under the optimum experimental conditions, eight benzene‐enriched enantiomers were separated completely, and the resolution of trans‐stilbene oxide perfectly reached 4.83. Compared with the blank column of non‐bonded rGO, the separation performance is better on the new CSP, which is due to the existence of rGO to produce special retention interaction with analytes, such as π‐π stacking, hydrophobic effect, π‐π electron‐donor–acceptor interaction, and hydrogen bonding. Therefore, the obtained CSP shows special selectivity for benzene‐enriched enantiomers, improves separation selectivity and efficiency, and rGO plays a synergistic effect with cellulose derivatives on enantioseparation.  相似文献   

20.
    
《Chirality》2017,29(3-4):147-154
Separations of six dihydropyridine enantiomers on three commercially available cellulose‐based chiral stationary phases (Chiralcel OD‐RH, Chiralpak IB, and Chiralpak IC) were evaluated with high‐performance liquid chromatography (HPLC). The best enantioseparation of the six chiral drugs was obtained with a Chiralpak IC (250 × 4.6 mm i.d., 5 μm) column. Then the influence of the mobile phase including an alcohol‐modifying agent and alkaline additive on the enantioseparation were investigated and optimized. The optimal mobile phase conditions and maximum resolution for every analyte were as follows respectively: n‐hexane/isopropanol (85:15, v /v) for nimodipine (R  = 5.80) and cinildilpine (R  = 5.65); n‐hexane/isopropanol (92:8, v /v) for nicardipine (R  = 1.76) and nisoldipine (R  = 1.92); and n‐hexane/isopropanol/ethanol (97:2:1, v /v/v) for felodipine (R  = 1.84) and lercanidipine (R  = 1.47). Relative separation mechanisms are discussed based on the separation results, and indicate that the achiral parts in the analytes' structure showed an important influence on the separation of the chiral column.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号