首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Guo F  Carter DE  Leask A 《PloS one》2011,6(5):e19756
Unlike skin, oral gingival do not scar in response to tissue injury. Fibroblasts, the cell type responsible for connective tissue repair and scarring, are exposed to mechanical tension during normal and pathological conditions including wound healing and fibrogenesis. Understanding how human gingival fibroblasts respond to mechanical tension is likely to yield valuable insights not only into gingival function but also into the molecular basis of scarless repair. CCN2/connective tissue growth factor is potently induced in fibroblasts during tissue repair and fibrogenesis. We subjected gingival fibroblasts to cyclical strain (up to 72 hours) using the Flexercell system and showed that CCN2 mRNA and protein was induced by strain. Strain caused the rapid activation of latent TGFβ, in a fashion that was reduced by blebbistatin and FAK/src inhibition, and the induction of endothelin (ET-1) mRNA and protein expression. Strain did not cause induction of α-smooth muscle actin or collagen type I mRNAs (proteins promoting scarring); but induced a cohort of pro-proliferative mRNAs and cell proliferation. Compared to dermal fibroblasts, gingival fibroblasts showed reduced ability to respond to TGFβ by inducing fibrogenic mRNAs; addition of ET-1 rescued this phenotype. Pharmacological inhibition of the TGFβ type I (ALK5) receptor, the endothelin A/B receptors and FAK/src significantly reduced the induction of CCN2 and pro-proliferative mRNAs and cell proliferation. Controlling TGFβ, ET-1 and FAK/src activity may be useful in controlling responses to mechanical strain in the gingiva and may be of value in controlling fibroproliferative conditions such as gingival hyperplasia; controlling ET-1 may be of benefit in controlling scarring in response to injury in the skin.  相似文献   

2.
3.
Parallels between tissue repair and embryo morphogenesis   总被引:18,自引:0,他引:18  
Wound healing involves a coordinated series of tissue movements that bears a striking resemblance to various embryonic morphogenetic episodes. There are several ways in which repair recapitulates morphogenesis. We describe how almost identical cytoskeletal machinery is used to repair an embryonic epithelial wound as is involved during the morphogenetic episodes of dorsal closure in Drosophila and eyelid fusion in the mouse foetus. For both naturally occurring and wound-activated tissue movements, JNK signalling appears to be crucial, as does the tight regulation of associated cell divisions and adhesions. In the embryo, both morphogenesis and repair are achieved with a perfect end result, whereas repair of adult tissues leads to scarring. We discuss whether this may be due to the adult inflammatory response, which is absent in the embryo.  相似文献   

4.
5.
6.
Fetal wounds heal without scar formation, fibrosis, or contracture. Compared with adult wounds, they are characterized by major differences in the extracellular matrix and the absence of myofibroblastic cells. The reasons for these differences are not well known and determination of factors affecting the absence of scarring in the fetus may lead to strategies for controlling adult pathological scarring. In the present study, we have assessed the effects of serum on the behavior of normal human dermal fibroblasts. Using an in vitro approach, we investigated the effects of fetal and adult serum on cell properties such as growth rate, collagen synthesis, gelatinase activities, and differentiation to myofibroblasts using biochemical, morphological, and ultrastructural parameters. We studied the induction of α-smooth muscle (α-SM) actin in fibroblasts, and its correlation with increased collagen gel contraction by the cells. Our results showed that, compared with FBS (fetal bovine serum), postnatal calf serum (PCS) decreased mitogenic activity and collagenase synthesis but not collagen synthesis. Furthermore, cells cultured with PCS differentiated to myofibroblasts with an increase in cell diameter, number of stress fibers, α-SM actin expression, and collagen gel contraction. To characterize the molecules involved in this differentiation process, the amount of transforming growth factor β (TGFβ) in FBS and PCS was determined and the effect of neutralizing anti-TGFβ antibody was evaluated. It was determined that FBS contained more TGFβ than PCS, but that essentially all the TGFβ was latent in both sera. However, results obtained with anti-TGFβ antibody show that active TGFβ is present when human dermal fibroblasts are cultured with medium containing PCS. These results suggest that, in the presence of PCS but not FBS, the cells either produce active TGFβ or an enzyme that is able to activate latent serum TGFβ. Alternatively, sera may contain two different forms of latent TGFβ, the PCS form being activated by the dermal fibroblast cells. A similar mechanism may be involved, at least in part, in skin wound healing and may underlie the appearance of myofibroblasts in postnatal wounds. J. Cell. Physiol. 171:1–10, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

7.
Wound-healing mechanisms change during transition from prenatal to postnatal stage. Cytokines are known to play a key role in this process. The current study investigated the differential cytokine activity and healing morphology during healing of incisional skin wounds in rats of the ages neonatal (p0), 3 days old (p3) and adult, after six different healing times (2 hrs to 30 days). All seven tested cytokines (Transforming Growth Factor (TGF) alpha, TGFbeta1, -beta2 and -beta3, IGF 1, Platelet Derived Growth Factor A (PDGF A), basic Fibroblast Growth Factor (bFGF) exhibited higher expression in the adult wounds than at the ages p0 and p3. Expression typically peaked between 12 hrs and 3 days post-wounding, and was not detectable any more at days 10 and 30. The neonate specimen showed more rapid re-epithelialization, far less inflammation and scarring, and larger restitution of original tissue architecture than their adult counterparts, resembling a prenatal healing pattern. The results may encourage the use of neonatal rat skin as a wound-healing model for further studies, instead of the more complicated prenatal animal models. Secondly, the data may recommend inhibition of PDGF A, basic FGF or TGF-beta1 as therapeutic targets in efforts to optimize wound healing in the adult organism.  相似文献   

8.
Decorin is a small leucine-rich proteoglycan (SLRP) that plays a vital role in many important cellular processes in several tissues including the cornea. A normal constituent of the corneal stroma, decorin is also found in the majority of connective tissues and is related structurally to other small proteoglycans. It interacts with various growth factors such as epidermal growth factor (EGF) and transforming growth factor beta (TGFβ) to regulate processes like collagen fibrillogenesis, extracellular matrix (ECM) compilation, and cell-cycle progression. Studies have linked decorin dysregulation to delayed tissue healing in patients with various diseases including cancer. In the cornea, decorin is involved in the regulation of transparency, a key function for normal vision. It has been reported that mutations in the decorin gene are associated with congenital stromal dystrophy, a disease that leads to corneal opacity and visual abnormalities. Decorin also antagonizes TGFβ in the cornea, a central regulatory cytokine in corneal wound healing. Following corneal injury, increased TGFβ levels induce keratocyte transdifferentiation to myofibroblasts and, subsequently, fibrosis (scarring) in the cornea. We recently reported that decorin overexpression in corneal fibroblasts blocks TGFβ-driven myofibroblast transformation and fibrosis development in the cornea in vitro suggesting that decorin gene therapy can be used for the treatment of corneal scarring in vivo.  相似文献   

9.
Xenopus froglets can perfectly heal skin wounds without scarring. To explore whether this capacity is maintained as development proceeds, we examined the cellular responses during the repair of skin injury in 8‐ and 15‐month‐old Xenopus laevis. The morphology and sequence of healing phases (i.e., inflammation, new tissue formation, and remodeling) were independent of age, while the timing was delayed in older frogs. At the beginning of postinjury, wound re‐epithelialization occurred in form of a thin epithelium followed by a multilayered epidermis containing cells with apoptotic patterns and keratinocytes stained by anti‐inducible nitric oxide synthase (iNOS) antibody. The inflammatory response, early activated by recruitment of blood cells immunoreactive to anti‐tumor necrosis factor (TNF)‐α, iNOS, transforming growth factor (TGF)‐β1, and matrix metalloproteinase (MMP)‐9, persisted over time. The dermis repaired by a granulation tissue with extensive angiogenesis, inflammatory cells, fibroblasts, and anti‐α‐SMA positive myofibroblasts. As the healing progressed, wounded areas displayed vascular regression, decrease in cellularity, and rearrangement of provisional matrix. The epidermis restored to a prewound morphology while granulation tissue was replaced by a fibrous tissue in a scar‐like pattern. The quantitative PCR analysis demonstrated an up‐regulated expression of Xenopus suppressor of cytokine signaling 3 (XSOCS-3) and Xenopus transforming growth factor-β2 (XTGF-β2) soon after wounding and peak levels were detected when granulation tissue was well developed with a large number of inflammatory cells. The findings indicate that X. laevis skin wound healing occurred by a combination of regeneration (in epidermis) and repair (in dermis) and, in contrast to froglet scarless wound healing, the growth to a more mature adult stage is associated with a decrease in regenerative capacity with scar‐like tissue formation. J. Morphol. 274:956–964, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
11.
Wound healing is a complex process requiring communication for the precise co-ordination of different cell types. The role of extracellular communication through growth factors in the wound healing process has been extensively documented, but the role of direct intercellular communication via gap junctions has scarcely been investigated. We have examined the dynamics of gap junction protein (Connexins 26, 30, 31.1 and 43) expression in the murine epidermis and dermis during wound healing, and we show that connexin expression is extremely plastic between 6 hours and 12 days post-wounding. The immediate response (6 h) to wounding is to downregulate all connexins in the epidermis, but thereafter the expression profile of each connexin changes dramatically. Here, we correlate the changing patterns of connexin expression with key events in the wound healing process.  相似文献   

12.
13.
14.
Early lethality of mice with complete deletion of the matrix metalloproteinase MMP14 emphasized the proteases’ pleiotropic functions. MMP14 deletion in adult dermal fibroblasts (MMP14Sf-/-) caused collagen type I accumulation and upregulation of MMP3 expression. To identify the compensatory role of MMP3, mice were generated with MMP3 deletion in addition to MMP14 loss in fibroblasts. These double deficient mice displayed a fibrotic phenotype in skin and tendons as detected in MMP14Sf-/- mice, but no additional obvious defects were detected. However, challenging the mice with full thickness excision wounds resulted in delayed closure of early wounds in the double deficient mice compared to wildtype and MMP14 single knockout controls. Over time wounds closed and epidermal integrity was restored. Interestingly, on day seven, post-wounding myofibroblast density was lower in the wounds of all knockout than in controls, they were higher on day 14. The delayed resolution of myofibroblasts from the granulation tissue is paralleled by reduced apoptosis of these cells, although proliferation of myofibroblasts is induced in the double deficient mice. Further analysis showed comparable TGFβ1 and TGFβR1 expression among all genotypes. In addition, in vitro, fibroblasts lacking MMP3 and MMP14 retained their ability to differentiate into myofibroblasts in response to TGFβ1 treatment and mechanical stress. However, in vivo, p-Smad2 was reduced in myofibroblasts at day 5 post-wounding, in double, but most significant in single knockout, indicating their involvement in TGFβ1 activation. Thus, although MMP3 does not compensate for the lack of fibroblast-MMP14 in tissue homeostasis, simultaneous deletion of both proteases in fibroblasts delays wound closure during skin repair. Notably, single and double deficiency of these proteases modulates myofibroblast formation and resolution in wounds.  相似文献   

15.
Integrin-linked kinase (ILK) is an intracellular effector of cell–matrix interactions and regulates many cellular processes, including growth, proliferation, survival, differentiation, migration, invasion and angiogenesis. The present work analyzes the role of ILK in wound healing in adult animals using a conditional knock-out of the ILK gene generated with the tamoxifen-inducible Cre-lox system (CRE-LOX mice). Results show that ILK deficiency leads to retarded wound closure in skin. Intracellular mechanisms involved in this process were analyzed in cultured mouse embryonic fibroblast (MEF) isolated from CRE-LOX mice and revealed that wounding promotes rapid activation of phosphatidylinositol 3-kinase (PI3K) and ILK. Knockdown of ILK resulted in a retarded wound closure due to a decrease in cellular proliferation and loss of HGF protein expression during the healing process, in vitro and in vivo. Alterations in cell proliferation and wound closure in ILK-deficient MEF or mice could be rescued by exogenous administration of human HGF. These data demonstrate, for the first time, that the activation of PI3K and ILK after skin wounding are critical for HGF-dependent tissue repair and wound healing.  相似文献   

16.
TGF-β superfamily signals play complex roles in regulation of tissue repair and inflammation in mammals [1]. Drosophila melanogaster is a well-established model for the study of innate immune function [2, 3] and wound healing [4-7]. Here, we explore the role and regulation of two TGF-β superfamily members, dawdle and decapentaplegic (dpp), in response to wounding and infection in adult Drosophila. We find that both TGF-β signals exhibit complex regulation in response to wounding and infection, each is expressed in a subset of phagocytes, and each inhibits a specific arm of the immune response. dpp is rapidly activated by wounds and represses the production of antimicrobial peptides; flies lacking dpp function display persistent, strong antimicrobial peptide expression after even a small wound. dawdle, in contrast, is activated by Gram-positive bacterial infection but repressed by Gram-negative infection or wounding; its role is to limit infection-induced melanization. Flies lacking dawdle function exhibit melanization even when uninfected. Together, these data imply a model in which the bone morphogenetic protein (BMP) dpp is an important inhibitor of inflammation following sterile injury whereas the activin-like dawdle determines the nature of the induced immune response.  相似文献   

17.
In healing tissue, fibroblasts differentiate to α-smooth muscle actin (SMA)-expressing contractile-myofibroblasts, which pull the wound edges together ensuring proper tissue repair. Uncontrolled expansion of the myofibroblast population may, however, lead to excessive tissue scarring and finally to organ dysfunction. Here, we demonstrate that the loss of low-density lipoprotein receptor-related protein (LRP) 1 overactivates the JNK1/2-c-Jun-Fra-2 signaling pathway leading to the induction of α-SMA and periostin expression in human lung fibroblasts (hLF). These changes are accompanied by increased contractility of the cells and the integrin- and protease-dependent release of active transforming growth factor (TGF)-β1 from the extracellular matrix (ECM) stores. Liberation of active TGF-β1 from the ECM further enhances α-SMA and periostin expression thus accelerating the phenotypic switch of hLF. Global gene expression profiling of LRP1-depleted hLF revealed that the loss of LRP1 affects cytoskeleton reorganization, cell-ECM contacts, and ECM production. In line with these findings, fibrotic changes in the skin and lung of Fra-2 transgenic mice were associated with LRP1 depletion and c-Jun overexpression. Altogether, our results suggest that dysregulation of LRP1 expression in fibroblasts in healing tissue may lead to the unrestrained expansion of contractile myofibroblasts and thereby to fibrosis development. Further studies identifying molecules, which regulate LRP1 expression, may provide new therapeutic options for largely untreatable human fibrotic diseases.  相似文献   

18.
Proliferation and migration of epidermal keratinocytes are essential for proper cutaneous wound closure after injury. αv integrins and several of their ligands—vitronectin, TGFβ and thrombospondin—are up-regulated in healing wounds. However, the role of αv integrins in wound re-epithelialization is unknown. Here, we show that genetic depletion or antibody-mediated blockade of pan-integrin αv, or the specific heterodimer αvβ6, in keratinocytes limited epidermal proliferation at the wound edge and prevented re-epithelialization of wounded human organotypic skin both in vivo and in vitro. While we did not observe a migration defect upon αv blockade in vivo, αv was necessary for keratinocyte migration over longer distances in organotypic skin. Integrin αv is required for local activation of latent TGFβ, and the wound healing defect in the setting of integrin αv loss was rescued by exogenous, active TGFβ, indicating that the αv-TGFβ signaling axis is a critical component of the normal epidermal wound healing program. As chronic wounds are associated with decreased TGFβ signaling, restoration of TGFβ activity may have therapeutic utility in some clinical settings.  相似文献   

19.
The African spiny mouse (Acomys spp.) can heal full thickness excisional skin wounds in a scar-free manner with regeneration of all dermal components including hair and associated structures. Comparing Acomys scar-free healing from Mus scarring identifies gene expression differences that discriminate these processes. We have performed an extensive comparison of gene expression profiles in response to 8mm full-thickness excisional wounds at days 3, 5, 7 and 14 post-wounding between Acomys and Mus to characterize differences in wound healing, and identify mechanisms involved in scar-free healing. We also identify similarities with scar-free healing observed in fetal wounds. While wounding in Mus elicits a strong inflammatory response, wounding in Acomys produces a moderated immune response and little to no increase in expression for most cytokines and chemokines assayed. We also identified differences in the ECM profiles of the Acomys wounds, which appear to have a collagen profile more similar to fetal wounds, with larger increases in expression of collagen types III and V. In contrast, Mus wounds have very high levels of collagen XII. This data suggests that an overall lack of induction of cytokines and chemokines, coupled with an ECM profile more similar to fetal wounds, may underlie scar-free wound healing in Acomys skin. These data identify candidate genes for further testing in order to elucidate the causal mechanisms of scar-free healing.  相似文献   

20.
The transforming growth factor beta (TGFβ) pathway is involved in embryonic development and several inherited and acquired human diseases. The gene for TGFβ3 (Tgfb3) encodes one of the three ligands for TGFβ receptors. It is widely expressed in the embryo and its mutation or misexpression is found in human diseases. Tgfb3-/- mice die at birth from cleft palate, precluding functional studies in adults. Here, we generated mice in which exon 6 of Tgfb3 was flanked with LoxP sites (Tgfb3flox/flox). The adult mice were normal and fertile. EIIa-Cre-mediated deletion of exon 6 in Tgfb3flox/flox mice efficiently generated Tgfb3 conditional knockout (Tgfb3cko/cko) mice which died at birth from the same cleft palate defect as Tgfb3-/- mice, indicating that the conditional and knockout alleles are functionally equivalent. This Tgfb3cko allele will now enable studies of TGFβ3 function in different cell or tissue types in embryonic development and during adulthood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号