首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In Tilapia mossambica organized lymphoid tissues are present in the thymus, head-kidney and spleen, whereas they are lacking in pericardial tissue, liver, mesonephros, intestine and rectum. No lymphoid tissue was observed in the chondrocranium and cartilaginous viscerocranium of young adults. The thymus in Tilapia is encapsulated by thin strands of collagen fibers and consists of outer, middle and inner zones. While middle and inner zones are comparable to the thymic cortex and medulla of higher vertebrates, the homology of the outer zone is not clear. At the anterior end of the thymus, a loose aggregation of lymphocytes without a definite boundary has been observed. The head-kidney is characterized by the presence of lymphoid follicles, a subcapsular sinus, a hilus-like area and lymphatic vessels. The spleen is grossly divisible into white pulp and red pulp; the white pulp contains only a reticular area without definite lymphoid centers and the latter contains predominantly erythrocytes. Morphological changes in the lymphoid organs associated with immune response have been discussed.  相似文献   

2.
Summary The aim of the present study was to analyze the nature of lymphoid and non-lymphoid cellular components occurring in distinct histological compartments of the splenic white pulp of the turtle, Mauremys caspica, in order to define their possible correlations with those of the spleen of higher vertebrates, principally mammals. The white pulp of M.caspica consisted of 3 clearly distinguishable regions: (1) the periateriolar lymphoid sheath, and (2) the inner and (3) the outer zones of the periellipsoidal lymphoid sheath. Reticular cells intimately associated with reticular fibres constituted an extensive meshwork in the periarteriolar lymphoid sheath which housed principally Ig-negative lyphoid cells, mature and immature plasma cells, and interdigitating cells. A few Ig-positive cells were also present in the peripheral region of the periarteriolar lymphoid sheath. The inner and outer zones of the periellipsoidal lymphoid sheath were separated by a discontinuous layer of reticular cell processes. In the inner zone, surface Ig-positive lymphoid cells predominated as well as dendritic cells, resembling ultrastructurally the mammalian follicular dendritic cells, although no germinal centres were found in the turtle spleen. Macrophages, some cytoplasmic Ig-positive cells, and Ig-negative lymphoid cells appeared in the outer zone of the periellipsoidal lymphoid sheath. These results allow us to speculate on a phylogenetic relationship between the periarteriolar lymphoid sheath and the inner and the outer zones of the periellipsoidal lymphoid sheath of the spleen of M. caspica and the periarteriolar lymphoid tissue, the lymphoid follicles and the marginal zone, respectively, of the mammalian splenic white pulp.  相似文献   

3.
Histology of the caprine hemal node   总被引:1,自引:0,他引:1  
Caprine hemal nodes were studied by light microscopy after glutaraldehyde fixation and epoxy resin embedding. A node consisted of a capsule, subcapsular and other sinuses, cortex, medulla and hilus. Elements of circulating blood filled the interstices of the reticular meshwork and associated macrophages which traversed the lumina of subcapsular and medullary sinuses. The latter were rare in 1-month-old goats, progressively increased in number and size in 2- to 4-month-old goats and coalesced with each other and the subcapsular sinus in adult animals. The cortical tissue appeared as lymphoid nodules. Circumferential lymphatic vessels abutted on outer margins of the nodules and gave origin to several radial lymphatics which branched and anastomosed between the medullary blood sinuses. Medullary cords were organized around the radial lymphatics. A single efferent lymphatic was formed at the hilum by confluence of the radial lymphatics. Our study, in contrast to earlier reports, shows that caprine hemal nodes possess efferent lymphatics. The present data suggest that the hemal nodes are involved, in addition to classical functions, in blood storage by hemoconcentration.  相似文献   

4.
The subpopulations of lymphocytes and non-lymphoid cells in high endothelial venules (HEV) and in lymphatic capillaries surrounding lymphoid follicles in bronchus-associated lymphoid tissue (BALT) were examined by electron microscopy after preembedding the tissue and staining with an immunoperoxidase technique. The results were compared with those obtained in gut-associated lymphoid tissue (GALT) reported previously. Monoclonal mouse-anti-rat T cell, IgG, IgM, IgA, and Ia antisera were used. Plasma cells that were reactive to anti-IgG, anti-IgM, and anti-IgA were detected as cells in which the 3',3'-diaminobenzidine tetrahydroxychloride reaction product was localized in rough endoplasmic reticulum and perinuclear spaces but not on plasma membranes. These plasma cells did not occur in either lymphatic capillaries or HEV in BALT as they did in GALT. Cells with surface Ig (sIg cells), T-cell antigen (T cells), and Ia antigen (Ia cells) were present in BALT. T cells were located predominantly in the follicular area opposite the bronchial epithelium; IgM- and IgG-reactive cells were found in the follicular area adjacent to the bronchial epithelium; and IgA-positive cells were found in the lateral part of the area where the T cells were localized (T-cell area). Ia cells were abundant throughout BALT and in moderate numbers in the epithelium. A striking observation was the presence of "nurse-cell"-like structures in the periphery of BALT. The percentages of T, sIgG, sIgM, and sIgA cells in the HEV were 54.7%, 2.4%, 28.9%, and 27.3%, respectively, and in the lymphatic capillaries, 41.2%, 3.8%, 38.2%, and 21.2%, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
We have produced a panel of monoclonal antibodies directed against nonlymphoid cells in central and peripheral lymphoid organs. In this paper we present the reactivity of one of these antibodies, ER-TR7. This antibody detects reticular fibroblasts, which constitute the cellular framework of lymphoid and nonlymphoid organs and their products. In frozen sections of the spleen incubated with this antibody, the red pulp and white pulp are clearly delineated. Furthermore, the major white pulp compartments--the follicles and periarteriolar lymphoid sheath as well as the marginal zone--are recognized by their characteristic labeling patterns. In lymph nodes, the capsule, sinuses, follicles, paracortex, and medullary cords are clearly delineated. In the thymus and bone marrow no such specialized compartments were demonstrated. ER-TR7 reacts with an intracellular component of fibroblasts. Since ER-TR7 does not react with purified laminin, collagen types I-V, fibronectin, heparan sulfate proteoglycan, entactin, or nidogen, it detects a hitherto uncharacterized antigen. The possible role of the ER-TR7 positive reticular fibroblasts in the cellular organization of peripheral lymphoid organs will be discussed.  相似文献   

6.
Summary A casting technique has been employed to display in three dimensions, the lymphatic microcirculation within the human lymph node. The casting compound filled the marginal sinus, and diffusely permeated the cortical lymphoid parenchyma. However, deep within the lymph node in the medullary region, the medium remained within the limits of the sinus walls. The casts showed well-defined channels appearing similar to vessels. These converged into larger vessels, which drained into efferent lymphatics leaving the node at the hilus.Electron microscopic examination showed that the outer wall of the marginal sinus and the trabecular side of trabecular sinuses had an intact, continuous endothelium with a basement membrane. However, gaps were present in the inner wall of the marginal sinus, as well as in the parenchymal wall of the trabecular sinus. In the medulla, the sinuses were lined by endothelial cells which appeared similar to macrophages. The sinus lining was incomplete and possessed numerous perforations. These observations indicated that sinus walls adjacent to connective tissue served as a barrier to cell movement, but those adjacent to a large lymphoid cell population had gaps, with cells in apparent transit between sinus lumen and parenchyma.  相似文献   

7.
Dendritic cells in the splenic white pulp of mice were intensely immunoreactive for epidermal-type fatty acid binding protein (E-FABP). This specific immunostaining revealed a clear difference in morphology between the dendritic cells in the periarterial lymphoid sheath (PALS) and follicular dendritic cells in the follicles in terms of cell sizes and process branching. No immunoreactivity was detected in dendritic cells in the marginal zones and the red pulp, although endothelial cells of almost all capillaries in the red pulp were immunoreactive for E-FABP. After peritoneal injection of lipopolysaccharide, the immunoreactive cells in PALS progressively enlarged and became rounded in shape with a peak in size at 24 h postinjection and they eventually resumed the dendritic form at 48 h postinjection. Within each of the enlarged immunoreactive cell perikarya were included small immunonegative apoptotic cells, presumptive lymphocytes. Taken together, E-FABP is useful as a marker for dendritic cells in the splenic white pulp, and may be involved through combination with fatty acids in antigen presentation and retention as well as in cytokine production.  相似文献   

8.
Migration pathways of B cell and CD4+ and CD8+ T cell subsets of murine thoracic duct lymphocytes (TDL) were mapped. Per weight, the spleen accumulated more TDL than any other organ, regardless of lymphocyte subset. Spleen autoradiographs showed early accumulations of TDL in marginal zone and red pulp. Many TDL exited the red pulp within 1 hr via splenic veins. The remaining TDL entered the white pulp, not directly from the adjacent marginal zone but via distal periarterial lymphatic sheaths (dPALS). From dPALS, T cells migrated proximally along the central artery into proximal sheaths (pPALS) and exited the white pulp via deep lymphatic vessels. B cells left dPALS to enter lymphatic nodules (NOD), then also exited via deep lymphatics. T cells homed to lymph nodes more efficiently than B cells. Lymphocytes entered nodes via high-endothelial venules (HEV). CD4+ TDL reached higher absolute concentrations in diffuse cortex than did CD8+ T cells. However, CD8+ TDL moved more quickly through diffuse cortex than did CD4+ TDL. B cells migrated from HEV into NOD. Both T and B TDL exited via cortical and medullary sinuses and efferent lymphatics. A migration pathway across medullary cords is described. All TDL subsets homed equally well to Peyer's patches. T TDL migrated from HEV into paranodular zones while B cells moved from HEV into NOD. All TDL exited via lymphatics. Few TDL entered zones beneath dome epithelium. All subsets were observed within indentations in presumptive M cells of the dome epithelium.  相似文献   

9.
人体胸腺和周围淋巴器官内T细胞亚群和NK细胞分布的研究   总被引:1,自引:0,他引:1  
本文用多种T细胞和NK细胞单抗和免疫组织化学的ABC技术,在冰冻切片上对人扁桃体、淋巴结、牌和胸腺内T细胞亚群和NK细胞的分布进行了检测。结果显示,CD5、CD8、CD4、CD3和AIG3阳性细胞主要分布在扁桃体,淋巴结的副皮质区、脾的动脉周围淋巴鞘和胸腺,但各种抗体的反应强度不同。从各种T细胞工群的染色强度和形状看,胸腺髓质部的胸腺细胞相当于周围淋巴器官内的胸腺依赖区。胸腺内T细胞在分化过程中,质膜上的抗原也有相应变化。NK细胞主要分布在淋巴小结的生发中心,淋巴结和扁桃体的副皮质区,脾的红髓以及胸腺的筋质部。这些不同的分布,说明NK细胞不仅与淋巴小结的活动有关,可能还参与机体的免疫调节功能。  相似文献   

10.
The follicle-associated epithelium (FAE) overlying the follicles of mucosa-associated lymphoid tissue is a key player in the initiation of mucosal immune responses. We recently reported strong clusterin expression in the FAE of murine Peyer’s patches. In this study, we examined the expression of clusterin in the human gut-associated lymphoid tissue (GALT) and Waldeyer’s ring. Immunohistochemistry for clusterin in human Peyer’s patches, appendix and colon lymphoid follicles revealed expression in M cells and in follicular dendritic cells (FDCs). Using cryo-immunogold electron microscopy in Peyer’s patches, we observed cytosolic immunoreactivity in M cells and labeling in the ER/Golgi biosynthetic pathway in FDCs. In palatine tonsils and adenoids, we demonstrated clusterin expression in germinal centers and in the lymphoepithelium in the crypts where M cells are localized. In conclusion, clusterin is expressed in M cells and follicular dendritic cells at inductive sites of human mucosa-associated lymphoid tissue suggesting a role for this protein in innate immune responses. Moreover, the use of clusterin as a human M cell marker could prove to be a valuable tool in future M cell research.  相似文献   

11.
Abstract

We investigated the structure of the hemal node in six healthy hair goats using histological and enzyme histochemical methods. After processing, tissue sections were stained with Crossman's trichrome, Gordon-Sweet's silver and Pappenheim's panoptic stains. Alpha-naphthyl acetate esterase (ANAE) and acid phosphatase (ACP-ase) were demonstrated in frozen sections. Hemal nodes were encapsulated by connective tissue and few smooth muscle cells. Several trabeculae originated from the capsule and extended into the hemal node. A subcapsular sinus was present beneath the capsule and was continuous with the deeper sinuses. Subcapsular and deep sinuses were filled with erythrocytes. The parenchyma consisted of lymphoid follicles, diffuse interfollicular lymphocytes and irregular wide lymphoid cords. Cortical and medullary regions were not distinct. ANAE (+) and ACP-ase (+) cells were located mainly in the germinal centers of the lymphoid follicles and also were scattered equally in the interfollicular region and lymphoid cords. Monocytes, macrophages and reticular cells displayed a diffuse positive reaction, whereas localized granular positivity was observed in lymphocytes. We demonstrated that the general structure of the hair goat hemal nodes is similar to that of other ruminant species.  相似文献   

12.
We investigated the structure of hemal nodes in Saanen goats using immunohistochemical staining. We examined the distribution of CD3 positive T lymphocytes, CD79a positive B lymphocytes, CD68 positive macrophages and S100 protein positive follicular dendritic cells. Hemal nodes of six healty adult female goats were used. Hemal nodes were removed from the thoracic and abdominal cavities. The oval to round hemal nodes were observed especially between the abdominal aorta and vena cava, and near the kidneys and adrenal glands. Tissue sections were stained with Crossmon’s modified triple stain to demonstrate general histological structure. The avidin-biotin-peroxidase technique using anti-CD3, anti-CD79a, anti-CD68 and anti-S100 primary antibodies was used for immunohistochemistry. Many CD3 positive T lymphocytes were found in the germinal center of the lymph follicles and in the lymphatic cords of hemal nodes; CD3 positive cells also were observed in the sinuses. CD79a and CD68 positive cells were found at the germinal center of the lymph follicles. In the lymph follicles near the subcapsular sinuses, CD79a and CD68 positive cells were found especially in e areas bordering the mantle zone. S100 positive cells were found in the lymph follicles, lymphatic cords and sinuses.  相似文献   

13.
The subcompartmentalization of the white pulp in the spleen is the result of interactions of specific resident stromal cells and migrating subtypes of lymphocytes. Because carbohydrate residues of cell membranes and extracellular matrices are involved in cell-cell and cell-matrix interactions, they were investigated in rat spleen by a broad panel of lectins. Splenic macrophages, which were also demonstrated by Perls' Prussian blue reaction, were labeled selectively by most mannose-specific lectins and gave the characteristic distribution patterns in all splenic (sub)compartments. One recently isolated lectin, Chelidonium majus agglutinin (CMA), visualized predominantly central arterioles, the reticular meshwork (RM) in the periarteriolar lymphatic sheaths (PALS), the circumferential reticulum cells limiting PALS and follicles, and some follicular dendritic cells (FDCs) in white pulp. The endothelial cells of venous sinuses in red pulp were also labeled by CMA and, if frozen sections were used, CMA also labeled the macrophages of the red pulp. Compared to CMA, the monoclonal antibody CD11, which can be used only in frozen sections, stained almost solely the fibrous (extracellular) component of the RM. Because CMA stains the reticulum cells in particular, it is better suited to visualize the stromal architecture of splenic white pulp than the monoclonal antibody. Because CMA can be applied to paraffin-embedded material, it is a particularly useful tool to study the splenic stromal architecture in archival material.  相似文献   

14.
The present study describes the morphology and ultrastructural features of postnatal follicular development in the volcano mouse ( Neotomodon alstoni alstoni ), an endemic Mexican rodent. By the first week of age, germ cells were organized in clusters within the ovigerous cords, and only 51.8% of them were associated with somatic cells. At the ultrastructural level, pairing chromosomes and cellular junctions between germ and pregranulosa cells, such as desmosomes, were observed. At this time, the zona pellucida could not be detected in the formed follicles. From 15 to 28 days postpartum, growing follicles were located at the medulla and inner cortex of the ovary, but most were atretic. The first preovulatory follicles were seen at 40 days. Likewise, corpora lutea were observed at this stage of development, which shows that the volcano mouse is a spontaneous ovulator. The follicular development of the volcano mouse shows strong similarities with that of the golden hamster, particularly during the first week. The morphological changes observed during postnatal follicular development of the volcano mouse follow the same general histological pattern as reported for other mammals, although the timing of these events is species-specific.  相似文献   

15.
We investigated the structure of the hemal node in six healthy hair goats using histological and enzyme histochemical methods. After processing, tissue sections were stained with Crossman's trichrome, Gordon-Sweet's silver and Pappenheim's panoptic stains. Alpha-naphthyl acetate esterase (ANAE) and acid phosphatase (ACP-ase) were demonstrated in frozen sections. Hemal nodes were encapsulated by connective tissue and few smooth muscle cells. Several trabeculae originated from the capsule and extended into the hemal node. A subcapsular sinus was present beneath the capsule and was continuous with the deeper sinuses. Subcapsular and deep sinuses were filled with erythrocytes. The parenchyma consisted of lymphoid follicles, diffuse interfollicular lymphocytes and irregular wide lymphoid cords. Cortical and medullary regions were not distinct. ANAE (+) and ACP-ase (+) cells were located mainly in the germinal centers of the lymphoid follicles and also were scattered equally in the interfollicular region and lymphoid cords. Monocytes, macrophages and reticular cells displayed a diffuse positive reaction, whereas localized granular positivity was observed in lymphocytes. We demonstrated that the general structure of the hair goat hemal nodes is similar to that of other ruminant species.  相似文献   

16.
Summary Reports vary on the amount and distribution of mast cells in lymph nodes. We analysed the mast-cell population in compartments of nodes of diverse sites, from euthymic and athymic animals of various ages. Nodal mast cells were few in young animals, occurring mostly in medullary sinuses. Aging is often accompanied by a moderate increase of nodal nast cells. In compartments of a few nodes of some aged athymic and euthymic animals, the mast cells were greatly increased in the extrafollicular zone overlying medulla directly. In certain cases, this great increase was accompanied by pronounced mast-cell degranulation and by fibrosis in the mast cell-rich extrafollicular zone. It is suggested that the mast cells of medullary sinuses relate to non-immunological events, while those of the lymphoid parenchyma relate to elements that can induce humoral immune responses or are somehow involved in nodal processes of such responses. It is further suggested that an occasional emergence, with aging, of a deficiency of particular humoral immune responses may induce an excessive increase of cortical mast cells, and that activities of the resulting dense mast-cell population contribute to the onset of fibrosis.Abbreviations AUC above unit center - AUP above unit periphery - AM above medulla (directly above medulla) Funded by the Medical Research Council of Canada  相似文献   

17.
Interrelations of the blood and lymphatic systems of the uterus have been examined in rats at pregnancy complicated with the ++phlebo-occlusive syndrome. Blood stream impediment in the caudal vena cava results in increasing diameter of the arterioles, capillaries and venules of the endo- and myometrium. Certain disturbances of blood circulation in the uterus at the ++phlebo-cclusive syndrome in the pregnancy animals, as a rule, reflect in the uterine lymph outflow; this is demonstrated as dilatation and deformity of the lymphatic vessels and capillaries, appearance of protrusions of the lymphatic vessels wall. There is a definite co-ordination in the reaction to the caudal vena cava occlusion in the intra-, ++extra-organic uterine lymphatic bed and in its regional lymph nodes, manifested as the following morphological signs: decreasing relative volume, that the lymphoid tissue occupies and increasing relative volume of the cortical and medullary intermediate sinuses.  相似文献   

18.
The spatial interrelation of the lymphatic and blood beds has been studied in the lymph node together with its stromal and lymphoid elements, using scanning electron microscopy of corrosive casts and native preparations. There is a great variety of pathways for lymph transport and blood vessels in dependence of their localization in the lymph node. Of a special interest are the pathways of lymphocytes migration across the walls in the cortical and medullary sinuses and in the postcapillary venules, as well as participation of the reticular tissue in the lymph node immune reactions.  相似文献   

19.
Maximum urine-concentrating capacity (UCC) differs widely among mammals of different species, being very high in some desert species (e.g. kangaroo rats) and very low in freshwater acquatic species (e.g. beaver). In this study, kidneys of 21 species of mammals from widely different habitats were studied in histological sections to determine whether differences in UCC can be attributed to differences in kidney structure. Parameters studied included the ratio of medullary to cortical thickness, the proportional subdivision of the medulla into inner and outer zones, and the dimensions of the vasa recta expressed in terms of the total area and the number of lumens within the vascular bundles. Determinations were made at a level where the size of individual vasa recta bundles has reached a constant maximum size, i.e. in the distal half of the outer zone. A positive correlation was found between the UCC and the ratio of medullary length to cortical thickness. No clear correlation existed between the proportion of the medullary length comprised of outer or inner zones and the UCC, although a trend to higher UCC in animals with relatively longer inner zones was apparent. Thus, it appears that the relative length of the entire medullary region is a major factor determining UCC, but the length of individual medullary zones is of lesser importance. A correlation was also found between the density of vasa recta per cubic millimeter of medullary tissue (the number of lumens regardless of identify in bundles, based on the number counted at the level sampled) and the UCC of the species. Data reported here support the view that UCC can be correlated with two parameters of kidney structure - the length of medulla relative to that of cortex and the density of vasa recta within the outer zone. It is proposed that the anatomical characteristics of the vascular supply to the medulla - that is, the vasa recta - are equally as important for the concentration of urine as is the primary mechanism determined by the characteristics of the loop of Henle and collecting ducts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号