首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Comparison of mitochondrial DNA (mtDNA) control-region sequences of 155 dunlins from 15 breeding populations confirmed the existence of five major phylogeographic groups in the circumpolar breeding range of this migratory shorebird species. Time estimates of the origin of groups, based on sequence divergences and a molecular clock for birds, suggest a scenario of repeated fragmentation of populations in isolated tundra refugia during the late Pleistocene. The distribution of about three-quarters of all detected molecular variance between phylogeographic groups attests to the strongly subdivided genetic population structure in dunlins that is being maintained by natal philopatry. Each mtDNA phylogeographic group can be related to a morphometrically defined subspecies, but several other recognized subspecies are not supported by monophyletic mtDNA lineages within their purported ranges. More detailed analysis of several European populations reveals low amounts of gene flow and the partitioning of a substantial fraction of molecular variance between them. This ongoing evolution of population-genetic structuring within the European phylogeographic group most likely started with the last retreat of the ice sheets some 10,000 years ago. Dunlins thus provide one of the clearest examples of the linkage between historical and contemporary components of mtDNA phylogeographic structuring in birds.  相似文献   

2.
Abstract Populations of the Asian elephant (Elephas maximus) have been reduced in size and become highly fragmented during the past 3000 to 4000 years. Historical records reveal elephant dispersal by humans via trade and war. How have these anthropogenic impacts affected genetic variation and structure of Asian elephant populations? We sequenced mitochondrial DNA (mtDNA) to assay genetic variation and phylogeography across much of the Asian elephant's range. Initially we compare cytochrome b sequences (cyt b) between nine Asian and five African elephants and use the fossil‐based age of their separation (~5 million years ago) to obtain a rate of about 0.013 (95% CI = 0.011–0.018) corrected sequence divergence per million years. We also assess variation in part of the mtDNA control region (CR) and adjacent tRNA genes in 57 Asian elephants from seven countries (Sri Lanka, India, Nepal, Myanmar, Thailand, Malaysia, and Indonesia). Asian elephants have typical levels of mtDNA variation, and coalescence analyses suggest their populations were growing in the late Pleistocene. Reconstructed phylogenies reveal two major clades (A and B) differing on average by HKY85/Γ‐corrected distances of 0.020 for cyt b and 0.050 for the CR segment (corresponding to a coalescence time based on our cyt b rate of ~1.2 million years). Individuals of both major clades exist in all locations but Indonesia and Malaysia. Most elephants from Malaysia and all from Indonesia are in well‐supported, basal clades within clade A, thus supporting their status as evolutionarily significant units (ESUs). The proportion of clade A individuals decreases to the north, which could result from retention and subsequent loss of ancient lineages in long‐term stable populations or, perhaps more likely, via recent mixing of two expanding populations that were isolated in the mid‐Pleistocene. The distribution of clade A individuals appears to have been impacted by human trade in elephants among Myanmar, Sri Lanka, and India, and the subspecies and ESU statuses of Sri Lankan elephants are not supported by molecular data.  相似文献   

3.
Abstract.— The distribution of circumtropical marine species is limited by continental boundaries, cold temperate conditions, and oceanic expanses, but some of these barriers are permeable over evolutionary time scales. Sister taxa that evolved in separate ocean basins can come back into contact, and the consequences of this renewed sympatry may be a key to understanding evolutionary processes in marine organisms. The circumtropical trumpetfishes (Aulostomus) include a West Atlantic species (A. maculatus), an Indian‐Pacific species (A. chinensis), and an East Atlantic species (A. strigosus) that may be the product of a recent invasion from the Indian Ocean. To resolve patterns of divergence and speciation, we surveyed 480 bp of mitochondrial DNA cytochrome b in 196 individuals from 16 locations. Based on a conventional molecular clock of 2% sequence divergence per million years, the deepest partitions in a neighbor‐joining tree (d= 0.063‐0.082) are consistent with separation of West Atlantic and Indian‐Pacific species by the Isthmus of Panama, 3–4 million years ago. By the same criteria, trumpetfish in the East Atlantic were isolated from the Indian Ocean about 2.5 million years ago (d= 0.044‐0.054), coincident with the advent of glacial cycles and cold‐water upwelling around South Africa. Continental barriers between tropical oceans have only rarely been surmounted by trumpetfishes, but oceanic barriers do not appear to be substantial, as indicated by weak population partitioning (øST= 0.093) in A. chinensis across the Indian and Pacific Oceans. Finally, morphological and mitochondrial DNA data indicate hybridization of A. strigosus and A. maculatus in Brazil. After 3–4 million years and a globe‐spanning series of vicariant and dispersal events, trumpetfish lineages have come back into contact in the southwest Atlantic and appear to be merging. This ring species phenomenon may occur in a broad array of marine organisms, with clear implications for the production and maintenance of biodiversity in marine ecosystems.  相似文献   

4.
To address aspects of the evolution and natural history of green turtles, we assayed mitochondrial (mt) DNA genotypes from 226 specimens representing 15 major rookeries around the world. Phylogenetic analyses of these data revealed (1) a comparatively low level of mtDNA variability and a slow mtDNA evolutionary rate (relative to estimates for many other vertebrates); (2) a fundamental phylogenetic split distinguishing all green turtles in the Atlantic-Mediterranean from those in the Indian-Pacific Oceans; (3) no evidence for matrilineal distinctiveness of a commonly recognized taxonomic form in the East Pacific (the black turtle C.m. agassizi or C. agassizi); (4) in opposition to published hypotheses, a recent origin for the Ascension Island rookery, and its close genetic relationship to a geographically proximate rookery in Brazil; and (5) a geographic population substructure within each ocean basin (typically involving fixed or nearly fixed genotypic differences between nesting populations) that suggests a strong propensity for natal homing by females. Overall, the global matriarchal phylogeny of Chelonia mydas appears to have been shaped by both geography (ocean basin separations) and behavior (natal homing on regional or rookery-specific scales). The shallow evolutionary population structure within ocean basins likely results from demographic turnover (extinction and colonization) of rookeries over time frames that are short by evolutionary standards but long by ecological standards.  相似文献   

5.
Substantiated cases of ring species in mammals are rare. I examined the variation in mitochondrial DNA (mtDNA) of Perognathus amplus and P. longimembris in and around Arizona to test the hypothesis proposed by Hoffmeister (1986) that these two taxa are members of a single ring species demonstrating circular overlap. Through digestion of purified mtDNA from 45 P. amplus and 35 P. longimembris with 16 type II restriction enzymes, I identified 38 distinct haplotypes that belong to eight different evolutionary lineages. I then amplified and directly sequenced a portion of the mitochondrial cytochrome-b region from individuals representative of the lineages identified by restriction fragments, and used these data for phylogeny reconstruction in both a parsimony and neighbor-joining setting. The resulting phylogeny was consistent with the ring hypothesis, but, based on the incompleteness of the ring of subspecies and the apparent timing of evolutionary events in this group, I conclude that P. amplus and P. longimembris are distinct lineages that have completed the speciation process.  相似文献   

6.
7.
Abstract: Restriction fragment length polymorphisms of mitochondrial DNA (mtDNA) were used to test for population subdivision in the bottlenose dolphin (Tursiops truncatus). Atlantic and Pacific dolphin mtDNA samples exhibited distinctly different haplotypes (approximately 2.4% sequence divergence), indicating a lack of gene exchange. Within the Atlantic Ocean, mtDNA samples from the Gulf of Mexico and the Atlantic Coast were also found to be distinct, with a sequence divergence of approximately 0.6%. The Atlantic Coast–Gulf of Mexico dichotomy is consistent with patterns of genetic variation from other marine and coastal organisms from this region, and supports the hypothesized role of bio-geographic events in promoting the divergence of these and other forms. Regional differentiation was identified along the Atlantic Coast, whereas low sequence divergences among haplotypes and consistent haplotype frequencies across populations suggested considerable gene exchange among Gulf of Mexico populations. A highly divergent haplotype found in two individuals from two localities in the Gulf of Mexico is best explained by dispersal from either a distinct offshore Gulf stock or an unsampled Atlantic Coast stock. Additional samples are required to test for the existence of a distinct offshore race and, if it exists, to identify its distribution and contribution to population structure.  相似文献   

8.
Juvenile loggerhead turtles (Caretta caretta) from West Atlantic nesting beaches occupy oceanic (pelagic) habitats in the eastern Atlantic and Mediterranean, whereas larger juvenile turtles occupy shallow (neritic) habitats along the continental coastline of North America. Hence the switch from oceanic to neritic stage can involve a trans-oceanic migration. Several researchers have suggested that at the end of the oceanic phase, juveniles are homing to feeding habitats in the vicinity of their natal rookery. To test the hypothesis of juvenile homing behaviour, we surveyed 10 juvenile feeding zones across the eastern USA with mitochondrial DNA control region sequences (N = 1437) and compared these samples to potential source (nesting) populations in the Atlantic Ocean and Mediterranean Sea (N = 465). The results indicated a shallow, but significant, population structure of neritic juveniles (PhiST = 0.0088, P = 0.016), and haplotype frequency differences were significantly correlated between coastal feeding populations and adjacent nesting populations (Mantel test R2 = 0.52, P = 0.001). Mixed stock analyses (using a Bayesian algorithm) indicated that juveniles occurred at elevated frequency in the vicinity of their natal rookery. Hence, all lines of evidence supported the hypothesis of juvenile homing in loggerhead turtles. While not as precise as the homing of breeding adults, this behaviour nonetheless places juvenile turtles in the vicinity of their natal nesting colonies. Some of the coastal hazards that affect declining nesting populations may also affect the next generation of turtles feeding in nearby habitats.  相似文献   

9.
Phylogenetic analyses of mitochondrial DNA (mtDNA) sequences were used to assess the matriarchal genetic structure of the threespine stickleback, Gasterosteus aculeatus. A 747 base-pair (bp) fragment of the cytochrome b was sequenced from 36 individuals collected from 25 localities in Europe, North America, and Japan. Two major divergent clades were revealed: one widespread in Japan but with representatives in some Alaskan and British Columbian lakes and the other common in Europe and North America. A simple diagnostic test using the polymerase chain reaction (PCR) and a restriction enzyme was used to assay additional individuals, confirming the absence of the Japanese clade in the Atlantic basin. Geographic distribution of mtDNA variation suggests (1) a recent origin of the Atlantic populations, and (2) support for previous hypotheses about the existence of Pleistocene refugia for freshwater fishes in Alaska and British Columbia. Silent substitution rates were used to date the colonization of the Atlantic at 90,000 to 260,000 yr before present, which conflicts with earlier dates implied by the fossil record. The recent replacement of Atlantic mitochondrial lineages suggested by our data may be explained by severe reduction or extinction of northern Atlantic populations during the Pleistocene, followed by a recent reinvasion from the Pacific. With a global perspective of the distribution of genetic variation as a framework, meaningful comparisons at a smaller geographical scale will now be possible.  相似文献   

10.
Evolutionary relationships among stone crabs (Menippe) from the Gulf of Mexico and western Atlantic were investigated by comparisons of restriction sites within anonymous nuclear DNA sequences and nucleotide sequences of both mitochondrial and a duplicated nuclear form of the mitochondrial large subunit ribosomal RNA (LSrDNA) gene. A survey of over 100 restriction sites by Southern blot analysis with 10 anonymous nuclear DNA sequence probes failed to reveal any differences between Menippe adina and M. mercenaria. Sequence comparisons of both mitochondrial and nuclear forms of the LSrDNA gene also did not distinguish these species. Although both LSrDNA gene sequences were variable, some haplotypes were shared by the two species, implying either incomplete gene lineage sorting or introgressive hybridization. Based on molecular clock calibrations, we estimate that all of the observed mitochondrial LSrDNA sequences share a common ancestor between 1.5 and 2.7 million years before present (M.Y.B.P.). However, because identical sequences are shared by the two species, these data are also compatible with a more recent common ancestry. These findings conflict with a previously proposed biogeographic scenario for North American Menippe, which featured a relict hybrid zone on the Atlantic Coast. We suggest an alternative scenario based on relatively recent events and ongoing, rather than historical, gene flow.  相似文献   

11.
In order to properly manage and conserve exploited shark species, detailed analyses of their population structure is needed. Global populations of Galeorhinus galeus are in decline due to the exploitation of the fishery over the past 80 years. Currently, the genetic structure of eastern Pacific populations of G. galeus is not known and recent observations in the northeastern Pacific suggest an increase in numbers. To evaluate gene flow among populations of G. galeus , 116 samples were collected and analysed from six geographically dispersed locations: Australia, North America, South Africa, South America (Argentina and Peru), and the UK. Analysis of 968 to 1006 bp of the 1068-bp mitochondrial control region revealed 38 unique haplotypes that were largely restricted to their collecting locality. Significant genetic structure was detected among populations (ΦST = 0.84; P  < 0.000001) and migration estimates were low ( Nm  = 0.05–0.97). Due to an apparent lack of migration, populations of G. galeus appear to be isolated from each other with little to no gene flow occurring among them. As a consequence of this isolation, increasing numbers of G. galeus in the northeastern Pacific can be best explained by local recruitment and not by input from geographically distant populations.  相似文献   

12.
We determined the phylogenetic relationships and geographic distribution of mitochondrial haplotypes of two host races of the tephritid fly Eurosta solidaginis, a gallmaker that attacks species of goldenrod (Solidago). We performed a preliminary survey by sequencing 492 bp from the 3′ ends of the mitochondrial cytochrome oxidase I and II subunits from a single individual from eight S. gigantea- and 10 S. altissima-associated populations across their range in eastern North America and from two outgroup species, Eurosta comma (two populations) and E. cribrata. Eurosta solidaginis haplotypes fell into two groups (“E” and “W” clades), which differed by four substitutions, one of which occurred within the recognition site of the DdeI restriction enzyme. We used the presence or absence of the restriction site to survey a total of 11 S. gigantea (20 individuals) and 20 S. altissima (43 individuals) host-race populations. All gigantea-fly haplotypes regardless of geographic origin carried the E-clade haplotype, whereas altissima-fly haplotypes were geographically partitioned. Altissima flies east of Michigan were of haplotype E, whereas those west of Michigan were of haplotype W, with mixed populations found in lower Michigan. These patterns confirm an earlier allozyme survey that suggested that S. altissima is the ancestral host for the gallmaker, but also suggest that the gigantea fly populations were derived from eastern U.S. altissima fly populations. The data support the conclusions of behavioral and ecological studies indicating that the shift to the derived host was facilitated by escape from natural enemies.  相似文献   

13.
Large pelagic vertebrates pose special conservation challenges because their movements generally exceed the boundaries of any single jurisdiction. To assess the population structure of whale sharks (Rhincodon typus), we sequenced complete mitochondrial DNA control regions from individuals collected across a global distribution. We observed 51 single site polymorphisms and 8 regions with indels comprising 44 haplotypes in 70 individuals, with high haplotype (h = 0.974 +/- 0.008) and nucleotide diversity (pi = 0.011 +/- 0.006). The control region has the largest length variation yet reported for an elasmobranch (1143-1332 bp). Phylogenetic analyses reveal no geographical clustering of lineages and the most common haplotype was distributed globally. The absence of population structure across the Indian and Pacific basins indicates that oceanic expanses and land barriers in Southeast Asia are not impediments to whale shark dispersal. We did, however, find significant haplotype frequency differences (AMOVA, Phi(ST) = 0.107, P < 0.001) principally between the Atlantic and Indo-Pacific populations. In contrast to other recent surveys of globally distributed sharks, we find much less population subdivision and no evidence for cryptic evolutionary partitions. Discovery of the mating and pupping areas of whale sharks is key to further population genetic studies. The global pattern of shared haplotypes in whale sharks provides a compelling argument for development of broad international approaches for management and conservation of Earth's largest fish.  相似文献   

14.
Linking the mitochondrial genotype and the organismal phenotype is of paramount importance in evolution of mitochondria. In this study, we determined the differences in catalytic properties of mitochondria dictated by divergences in the siII and siIII haplogroups of Drosophila simulans using introgressions of siII mtDNA type into the siIII nuclear background. We used a novel in situ method (permeabilized fibers) that allowed us to accurately measure the consumption of oxygen by mitochondria in constructed siII‐introgressed flies and in siIII‐control flies. Our results showed that the catalytic capacity of the electron transport system is not impaired by introgressions, suggesting that the functional properties of mitochondria are tightly related to the mtDNA haplogroup and not to the nuclear DNA or to the mito‐nuclear interactions. This is the first study, to our knowledge, that demonstrates a naturally occurring haplogroup can confer specific functional differences in aspects of mitochondrial metabolism. This study illustrates the importance of mtDNA changes on organelle evolution and highlights the potential bioenergetic and metabolic impacts that divergent mitochondrial haplogroups may have upon a wide variety of species including humans.  相似文献   

15.
Based on an extensive sampling regime from both nesting populations and bycatch, frequency analyses of mitochondrial (mt) DNA control region haplotypes in the Mediterranean were used to assess the genetic structure and stock composition of the loggerhead sea turtle, Caretta caretta, in different marine fisheries. The analyses show the following. (i) In drifting longline fisheries working in Mediterranean pelagic habitats 53–55% of turtles caught originated from the Mediterranean stock; (ii) In bottom-trawl fisheries all turtle bycatch is derived from this regional stock; (iii) This regional stock contribution to fishery bycatch suggests that the population size of the Mediterranean loggerhead nesting population is significantly larger than previously thought. This is consistent with a recent holistic estimate based on the discovery of a large rookery in Libya. (iv) Present impact of fishery-related mortality on the Mediterranean nesting population is probably incompatible with its long-term conservation. Sea turtle conservation regulations are urgently needed for the Mediterranean fisheries. (v) The significant divergence of mtDNA haplotype frequencies of the Turkish loggerhead colonies define this nesting population as a particularly important management unit. Large immature and adult stages from this management unit seem to be harvested predominantly by Egyptian fisheries. (vi) Combined with other data, our findings suggest that all the nesting populations in the Mediterranean should be considered as management units sharing immature pelagic habitats throughout the Mediterranean (and possibly the eastern Atlantic), with distinct and more localized benthic feeding habitats in the eastern basin used by large immatures and adults. (vii) Between the strict oceanic pelagic and the benthic stages, immature turtles appear to live through an intermediate neritic stage, in which they switch between pelagic and benthic foods.  相似文献   

16.
Bearded vulture populations in the Western Palearctic have experienced a severe decline during the last two centuries that has led to the near extinction of the species in Europe. In this study we analyse the sequence variation at the mitochondrial control region throughout the species range to infer its recent evolutionary history and to evaluate the current genetic status of the species. This study became possible through the extensive use of museum specimens to study populations now extinct. Phylogenetic analysis revealed the existence of two divergent mitochondrial lineages, lineage A occurring mainly in Western European populations and lineage B in African, Eastern European and Central Asian populations. The relative frequencies of haplotypes belonging to each lineage in the different populations show a steep East-West clinal distribution with maximal mixture of the two lineages in the Alps and Greece populations. A genealogical signature for population growth was found for lineage B, but not for lineage A; futhermore the Clade B haplotypes in western populations and clade A haplo-types in eastern populations are recently derived, as revealed by their peripheral location in median-joining haplotype networks. This phylogeographical pattern suggests allopatric differentiation of the two lineages in separate Mediterranean and African or Asian glacial refugia, followed by range expansion from the latter leading to two secondary contact suture zones in Central Europe and North Africa. High levels of among-population differentiation were observed, although these were not correlated with geographical distance. Due to the marked genetic structure, extinction of Central European populations in the last century re-sulted in the loss of a major portion of the genetic diversity of the species. We also found direct evidence for the effect of drift altering the genetic composition of the remnant Pyrenean population after the demographic bottleneck of the last century. Our results argue for the management of the species as a single population, given the apparent ecological exchangeability of extant stocks, and support the ongoing reintroduction of mixed ancestry birds in the Alps and planned reintroductions in Southern Spain.  相似文献   

17.
The land snail genus Albinaria exhibits an extreme degree of morphological differentiation in Greece, especially in the island of Crete. Twenty-six representatives of 17 nominal species and a suspected hybrid were examined by sequence analysis of a PCR-amplified mitochondrial DNA fragment of the large rRNA subunit gene. Maximum parsimony and neighbor-joining phylogenetic analyses demonstrate a complex pattern of speciation and differentiation and suggest that Albinaria species from Crete belong to at least three distinct monophyletic groups, which, however, are not monophyletic with reference to the genus as a whole. There is considerable variation of genetic distance within and among “species” and groups. The revealed phylogenetic relations do not correlate well with current taxonomy, but exhibit biogeographical coherence. Certain small- and large-scale vicariance events can be traced, although dispersal and parapatric speciation may also be present. Our analysis suggests that there was an early and rapid differentiation of Albinaria groups across the whole of the range followed by local speciation events within confined geographical areas.  相似文献   

18.
The puma is an iconic predator that ranges throughout the Americas, occupying diverse habitats. Previous phylogeographic analyses have revealed that it exhibits moderate levels of genetic structure across its range, with few of the classically recognized subspecies being supported as distinct demographic units. Moreover, most of the species’ molecular diversity was found to be in South America. To further investigate the phylogeographic structure and demographic history of pumas we analyzed mtDNA sequences from 186 individuals sampled throughout their range, with emphasis on South America. Our objectives were to refine the phylogeographic assessment within South America and to investigate the demographic history of pumas using a coalescent approach. Our results extend previous phylogeographic findings, reassessing the delimitation of historical population units in South America and demonstrating that this species experienced a considerable demographic expansion in the Holocene, ca. 8,000 years ago. Our analyses indicate that this expansion occurred in South America, prior to the hypothesized re-colonization of North America, which was therefore inferred to be even more recent. The estimated demographic history supports the interpretation that pumas suffered a severe demographic decline in the Late Pleistocene throughout their distribution, followed by population expansion and re-colonization of the range, initiating from South America.  相似文献   

19.
The shrews of the Sorex araneus group have undergone a spectacular chromosome evolution. The karyotype of Sorex granarius is generally considered ancestral to those of Sorex coronatus and S. araneus. However, a sequence of 777 base pairs of the cytochrome b gene of the mitochondrial DNA (mtDNA) produces a quite different picture: S. granarius is closely related to the populations of S. araneus from the Pyrenees and from the northwestern Alps, whereas S. coronatus and S. araneus from Italy and the southern Alps represent two well-separated lineages. It is suggested that mtDNA and chromosomal evolution are in this case largely independant processes. Whereas mtDNA haplotypes are closely linked to the geographical history of the populations, chromosomal mutations were probably transmitted from one population to another. Available data suggest that the impressive chromosome polymorphism of this group is quite a recent phenomenon.  相似文献   

20.
Mitochondrial DNA (mtDNA) was used to characterize patterns of geographic variation among white-tailed deer (Odocoileus virginianus) populations in the southeastern United States. Fifteen restriction enzymes were employed to survey and map 99 restriction sites in 142 deer from 18 localities in five southeastern states. Phylogenetic analysis revealed three primary groups of haplotypes: (1) southern Florida and the Florida Keys, (2) the remainder of peninsular Florida northward to South Carolina, and (3) the Florida panhandle westward to Mississippi. Geographical heterogeneity in haplotype frequencies suggests that stochastic lineage sorting or isolation by distance are not important determinates of mtDNA differentiation among deer populations. The pattern of mtDNA variation in white-tailed deer is concordant spatially with those observed in unrelated taxa suggesting the common influence of historical biogeographic events. The data (1) support previous hypotheses that relate contemporary patterns of intraspecific phylogeography in northern Florida to the physiogeographic history of the region; and (2) suggest that genetic differentiation in southern Florida may be attributable to episodes of Pleistocene dispersal. Despite potentially high vagility and human intervention, ecological and demographic characteristics of deer have effectively preserved the historical pattern of intraspecific mtDNA differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号