首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Optimization studies were carried out for the production of L-lactic acid from the fermentation of beet molasses by Lactobacillus delbrueckii. A Central Composite Design was used to determine the optimum values of the process variables (temperature, pH, inoculum concentration, and initial sucrose concentration) for obtaining the maximum yield and the maximum volumetric productivity of lactic acid. Among the variables selected for study, it was found that all of them apart from the temperature significantly affected the responses (yield and volumetric productivity of lactic acid). The Central Composite Design also permitted formulating two second-order polynomial empirical models relating to the responses and the significant variables. From these models it was possible to determine the value of the variables giving the maximum yield of lactic acid production (87.8%) and the maximum volumetric rate of lactic acid biosynthesis (2.7 g/l · h). Finally, the dependence of the lactic acid yield and productivity on the model variables was investigated. All conclusions are restricted to the experimental range studied.  相似文献   

2.
Production of lactic acid from beet molasses by Lactobacillus delbrueckii NCIMB 8130 in static and shake flask fermentation was investigated. Shake flasks proved to be a better fermentation system for this purpose. Substitution of yeast extract with other low cost protein sources did not improve lactic acid production. The maximum lactic acid concentration was achieved without treatment of molasses. A Central Composite Design was employed to determine the maximum lactic acid concentration at optimum values for the process variables (sucrose, yeast extract, CaCO3). A satisfactory fit of the model was realized. Lactic acid production was significantly affected both by sucrose–yeast extract and sucrose–CaCO3 interactions, as well as by the negative quadratic effects of these variables. Sucrose and yeast extract had a linear effect on lactic acid production while the CaCO3 had no significant linear effect. The maximum lactic acid concentration (88.0 g/l) was obtained at concentrations for sucrose, yeast extract and CaCO3 of 89.93, 45.71 and 59.95 g/l, respectively.  相似文献   

3.
Continuous mix batch bioreactors were used to study the kinetic parameters of lactic acid fermentation in microaerated-nutrient supplemented, lactose concentrated cheese whey using Lactobacillus helveticus. Four initial lactose concentrations ranging from 50 to 150 g l–1 were first used with no microaeration and no yeast extract added to establish the substrate concentration above which inhibition will occur and then the effects of microaeration and yeast extract on the process kinetic parameters were investigated. The experiments were conducted under controlled pH (5.5) and temperature (42 °C) conditions. The results indicated that higher concentrations of lactose had an inhibitory effect as they increased the lag period and the fermentation time; and decreased the specific growth rate, the maximum cell number, the lactose utilization rate, and the lactic acid production rate. The maximum lactic acid conversion efficiency (75.8%) was achieved with the 75 g l–1 initial lactose concentration. The optimum lactose concentration for lactic acid production was 75 g l–1 although Lactobacillus helveticus appeared to tolerate up to 100 g l–1 lactose concentration. Since the lactic acid productivity is of a minor importance compared to lactic acid concentration when considering the economic feasibility of lactic acid production from cheese whey using Lactobacillus helveticus, a lactose concentration of up to 100 g l–1 is recommended. Using yeast extract and/or microaeration increased the cell number, specific growth rate, cell yield, lactose consumption, lactic acid utilization rate, lactic acid concentration and lactic acid yield; and reduced the lag period, fermentation time and residual lactose. Combined yeast extract and microaeration produced better results than each one alone. From the results it appears that the energy uncoupling of anabolism and catabolism is the major bottleneck of the process. Besides lactic acid production, lactose may also be hydrolysed into glucose and galactose. The -galactosidase activity in the medium is caused by cell lysis during the exponential growth phase. The metabolic activities of Lactobacillus helveticus in the presence of these three sugars need further investigation.  相似文献   

4.
The batch production of gluconic acid in the presence of glucose, sucrose and molasses was investigated using free mycelia of Aspergillus foetidus NRRL 337 in shake flasks. Eight growth parameters were chosen as independent variables. The temperature, pH, substrate type and initial concentrations, inoculum percentage and shake rate directly affected the specific microorganism growth and gluconic acid production rates. The optimum temperature and initial pH values were found to be 33°C and five to six, respectively. The maximum specific growth and gluconic acid production rates were established as 57 g/dm3 of glucose, 75 g/dm3 of sucrose and 150 g/dm3 of molasses. The optimum values of the shake rate, inoculum percentage and initial ammonium nitrate concentration were determined as 100 1/min, 0.5% and 1.5 g/dm3, respectively. The maximum gluconic acid concentrations corresponding to these initial substrate concentrations were observed to be 8.3 g/dm3, 17.4 g/dm3 37.0 g/dm3, respectively. The optimum specific microbial growth and gluconic acid production rates were found as 0.0145 1/h and 0.0375 g/g × h, respectively, for the fermentation conditions of SGo = 57 g/dm3, T = 28°C, initial pH = 6.5, N = 84 1/min, A = 0.5 g/dm3 and I = 0.5%.  相似文献   

5.
Batch cultures of Lactobacillus rhamnosus were carried out at different pH values in order to study the limitation of growth and lactic acid production by the hydrogen ion, non-dissociated lactic acid and internal lactate concentrations. The effect of pH between 5 and 6.8 was studied at non-limiting concentrations of glucose; this is more significant for the lactic acid fermentation rate than for the maximum specific growth rate, as shown by the incomplete substrate consumption at lower values of medium pH and by the constant maximum cell mass obtained within the range of pH values studied. To check whether these results were a direct consequence of the different concentrations of the non-dissociated form of lactic acid at different external pH values, specific growth rates and lactic acid productions rates were calculated for each external pH value. The same specific growth rates were observed at the same non-dissociated lactic acid concentrations only at pH values of 5 and 5.5. For higher values of pH (pH > 6) the specific growth rate falls to zero as the non-dissociated lactic acid concentration decreases. This shows that generalisations made from studies performed within very narrow ranges of pH are not valid and that the non-dissociated form of lactic acid is not the only inhibiting species. The internal pH was measured experimentally for each external pH value in order to calculate the internal lactate ion concentration. This form is described to be the inhibitory one. The results obtained confirmed that the specific growth rate reached zero at approximately the same lactate concentration for all the pH values studied. Received: 31 January 1997 / Received revision: 15 May 1997 / Accepted: 19 May 1997  相似文献   

6.
A chemostat culture was used for lactic acid fermentation with Streptococcus faecalis at various pH values (8.0, 7.0, 6.0, 5.5, 5.0) and glucose concentrations (10, 20, 30 g/l). At every pH value, the reciprocals of the specific consumption rate of glucose and the specific production rate of lactic acid were linearly correlated to the reciprocal of the specific growth rate. The product, lactic acid, caused non-competitive inhibition of the specific growth rate at every pH value. Moreover, it was found that the cell death rate was dependent on pH and lactic acid. The death rate was smallest at pH 7.0 and increased with increasing lactic acid concentration. The kinetic equations of growth and death are proposed in a broader pH range. Correspondence to: H. Ohara  相似文献   

7.
The effect of temperature on the growth and L-lactic acid production of Lactobacillus casei G-03 was investigated in a 7-L bioreactor. It was found that the maximum specific growth rate (0.27 hr?1) and L-lactic acid concentration (160.2 g L?1) were obtained at a temperature of 41°C. Meanwhile, the maximum L-lactic acid yield, productivity, and dry cell weight were up to 94.1%, 4.44 g L?1 hr?1, and 4.30 g L?1, respectively. At lower or higher temperature, the Lactobacillus casei G-03 showed lower acid production and biomass. Moreover, the main metabolite distribution of strain G-03 response to variations in temperatures was studied. The results suggested that temperature has a remarkable effect on metabolite distribution, and the maximum carbon flux toward lactic acid at the pyruvate node was obtained at 41°C, which had the minimum carbon flux toward acetic acid.  相似文献   

8.
Lactic acid fermentation is an end product inhibited reaction. In situ separation of lactic acid from fermentation broth using ion exchange resins was investigated and compared with conventional fermentation system. Amberlite resin (IRA-400, Cl) was used to separate lactic acid from fermentation broth and pH was controlled online with an automatic pH controller. The effect of process variables on lactic acid production by Lactobacillus casei in whey permeate was studied. The maximum productivity was obtained at pH = 6.1, T = 37 °C and impeller speed = 200 rpm. The maximum concentration of lactic acid at optimum condition was found to be 37.4 g/L after 38 h of fermentation using in situ separation system. The productivity of in situ separation system was five times increased in comparison with conventional system.  相似文献   

9.
The influence of pH on growth, and lactic acid and bacteriocin production byLactococcus lactis subsp.lactis 140 NWC was studied during batch fermentation in a lactose-based complex medium. Growth and lactic acid production were modelled using a simple logistic equation while substrate consumption was found to be a function growth and lactic acid production rate. The optimal pH for growth and lactic acid production was between 6.0 and 6.5. Bacteriocin production showed primary metabolite kinetics. pH had a dramatic effect on the production of the bacteriocin, lactococcin 140. A maximum activity of 15.4 × 106 AU (arbitrary units) 1–1 was obtained after 7 h at pH 5.5. Maximum bacteriocin activity was achieved before the end of growth and was followed by a decrease in activity, which was due to adsorption to the cells of the producing organism, possibly followed by degradation by specific proteases. Both bacteriocin production and degradation rates were higher at pH 5.0 and 5.5, resulting in sharper activity peaks than at pH 6.0 or 6.5. On the basis of the experimental results a qualitative model for bacteriocin production is proposed.  相似文献   

10.
Biomass and lactic acid production by a Lactobacillus plantarum strain isolated from Serrano cheese, a microorganism traditionally used in foods and recognized as a potent probiotic, was optimized. Optimization procedures were carried out in submerged batch bioreactors using cheese whey as the main carbon source. Sequential experimental Plackett–Burman designs followed by central composite design (CCD) were used to assess the influence of temperature, pH, stirring, aeration rate, and concentrations of lactose, peptone, and yeast extract on biomass and lactic acid production. Results showed that temperature, pH, aeration rate, lactose, and peptone were the most influential variables for biomass formation. Under optimized conditions, the CCD for temperature and aeration rate showed that the model predicted maximal biomass production of 14.30 g l−1 (dw) of L. plantarum. At the central point of the CCD, a biomass of 10.2 g l−1 (dw), with conversion rates of 0.10 g of cell g−1 lactose and 1.08 g lactic acid g−1 lactose (w/w), was obtained. These results provide useful information about the optimal cultivation conditions for growing L. plantarum in batch bioreactors in order to boost biomass to be used as industrial probiotic and to obtain high yields of conversion of lactose to lactic acid.  相似文献   

11.
The esterification reaction between stearic acid and lactic acid using Rhizomucor miehei lipase and porcine pancreas lipase was optimized for maximum esterification using response surface methodology. The formation of the ester was found to depend on three parameters namely enzyme/substrate ratio, lactic acid (stearic acid) concentration and incubation period. The maximum esterification predicted by theoretical equations for both lipases matched well with the observed experimental values. In the case of R. miehei lipase, stearoyl lactic acid ester formation was found to increase with incubation period and lactic acid (stearic acid) concentrations with maximum esterification of 26.9% at an enzyme/substrate (E/S) ratio of 125 g mol−1. In the case of porcine pancreas lipase, esterification showed a steady increase with increase in incubation period and lactic acid (stearic acid) concentration independent of the E/S ratios employed. In the case of PPL, a maximum esterification of 18.9% was observed at an E/S ratio of 25 g mol−1 at a lactic acid (stearic acid) concentration of 0.09 M after an incubation period of 72 h. Received: 12 February 1999 / Received revision: 31 May 1999 / Accepted: 4 June 1999  相似文献   

12.
Lactic acid is a green chemical that can be used as a raw material for biodegradable polymer. To produce lactic acid through microbial fermentation, we previously screened a novel lactic acid bacterium. In this work, we optimized lactic acid fermentation using a newly isolated and homofermentative lactic acid bacterium. The optimum medium components were found to be glucose, yeast extract, (NH4)2HPO4, and MnSO4. The optimum pH and temperature for a batch culture ofLactobacillus sp. RKY2 was found to be 6.0 and 36°C, respectively. Under the optimized culture conditions, the maximum lactic acid concentration (153.9 g/L) was obtained from 200 g/L of glucose and 15 g/L of yeast extract, and maximum lactic acid productivity (6.21 gL−1h−1) was obtained from 100 g/L of glucose and 20 g/L of yeast extract. In all cases, the lactic acid yields were found to be above 0.91 g/g. This article provides the optimized conditions for a batch culture ofLactobacillus sp. RKY2, which resulted in highest productivity of lactic acid.  相似文献   

13.
An aroma-imparting mesophilic lactic starter (Lactococcus lactis ssp. lactis biovar. diacetylactis) was studied in batch culture in medium with 50 g·l–1 lactose and 2 g·l–1 citrate. The effect of pH on the physiology of growth and the production of flavour compounds was investigated with a mathematical model. The specific rates of growth and of lactose fermentation obeyed a law of non-competitive inhibition by lactic acid produced, inhibition increasing as the pH of the medium decreased. The pH thus acted indirectly by increasing the proportion of non-dissociated lactic acid, identified as the inhibiting form of lactic acid. The generalized model, taking into account the effect of pH, was tested using fermentations at pH controlled at different values (4.5–6.5), as well as with a fermentation conducted at non-regulated pH. These simulations supported the working hypotheses. The effect of pH on the fermentation of citric acid resulted in an increase in the maximal specific rate of citrate utilization, in the bioconversion yield, and in the constant of diacetyl and acetoin reduction at acid pH. The production of flavour compounds is a complex phenomenon resulting from the interaction of pH, citric acid concentration, and the physiological state of the cells. These results are discussed with respect to the use of this strain in the preparation of manufactured dairy products.  相似文献   

14.
The biochemical kinetic of direct fermentation for lactic acid production by fungal species of Rhizopus arrhizus 3,6017 and Rhizopus oryzae 2,062 was studied with respect to growth pH, temperature and substrate. The direct fermentation was characterized by starch hydrolysis, accumulation of reducing sugar, and production of lactic acid and fungal biomass. Starch hydrolysis, reducing sugar accumulation, biomass formation and lactic acid production were affected with the variations in pH, temperature, and starch source and concentration. A growth condition with starch concentration approximately 20 g/l at pH 6.0 and 30°C was favourable for both starch saccharification and lactic acid fermentation, resulting in lactic acid yield of 0.87–0.97 g/g starch associated with 1.5–2.0 g/l fungal biomass produced in 36 h fermentation. R. arrhizus 3,6017 had a higher capacity to produce lactic acid, while R. oryzae 2,062 produced more fungal biomass under similar conditions.  相似文献   

15.
Summary The pH decrease in a phosphate buffer due to fermentation of glucose to lactic acid by non-growing Lactobacillus plantarum cells has been studied. The method used offers a quick and reproducible way of measuring the glucose-fermenting activity of L. plantarum. The maximum observed velocity of pH decrease is linear with the biomass concentration and is defined as the activity of the cell suspension. With L. plantarum, recalculation of this arbitrary unit (pH·min–1 per gram dry weight) to a conceivable unit of lactic acid production rate (mol·min–1 per gram dry weight) is possible. This recalculation is based on the titration theory of a weak base with a weak acid. The same theory together with the lactic acid production kinetics of L. plantarum is applied to model the entire pH-time curve.Offprint requests to: L. C. Lievense  相似文献   

16.
Summary The fungal micro-organism Trichoderma reesei was grown in batch culture with excess glucose at pH values between 2.7 and 4.5 and temperatures between 25°C and 35°C. A maximum lipid concentration of 16.9% of the cell dry weight was achieved at pH 3.2 and a temperature of 27°C. Lipid concentration was shown to be correlated with a calculated maximum specific growth rate (µ mc ) and the maximum lipid value occurred at µ mc = 0.10 h–1. Fatty acid analysis was carried out and found to change with changing pH and temperature. Palmitic (16:0) acid and unusually high proportions of stearic acid (18:0) were commonly present. A conversion of fatty acids to palmitoleic acid (16:1) occurred following an unidentified nutrient limitation other than nitrogen depletion after 70 h of culture. Offprint requests to: D. E. Brown  相似文献   

17.
Summary The effect of various culture conditions on growth kinetics of an homofermentative strain of the lactic acid bacterium Streptococcus cremoris were investigated in batch cultures, in order to facilitate the production of this organism as a starter culture for the dairy industry. An optimal pH range of 6.3–6.9 was found and a lactose concentration of 37 g·l-1 was shown to be sufficient to cover the energetic demand for biomass formation, using the recommended medium. The study of the effect of lactic acid concentration on growth kinetics revealed that the end-product was not the sole factor affecting growth. The strain was characterized for its tolerance towards lactic acid and a critical concentration of 70 g·l-1 demonstrated. With the product yield of 0.9 g·g-1 at non-lactose limiting conditions the lactic acid concentration of 33 g·l-1 could not explain the low growth rates obtained, implicating a nutritional limitation.Symbols t f fermentation duration (h) - X Biomass concentration (g·l-1) - X m maximum biomass concentration (g·l-1) - S lactose concentration (g·l-1) - S r residual lactose concentration (g·l-1) - P produced lactic acid concentration (g·l-1) - P a added lactic acid concentration (g·l-1) - P c critical lactic acid concentration (g·l-1) - specific growth rate (h-1) - max maximum specific growth rate (h-1) - R x/S biomass yield (g·g-1) calculated when =0 - R P/S product yield (g·g-1)  相似文献   

18.
Summary Continuous and batch cultures of Lactobacillus helveticus operated under different conditions were studied with respect to the limitation of growth and lactic acid production by increasing undissociated lactic acid and hydrogen ion concentrations, respectively. In a single-stage continuous culture without pH control a final pH of 3.8 and 65 mm undissociated lactic acid was obtained. In two-stage continuous cultures provided with different growth media and run at different pH values, 65–70 mm free acid was obtained in the second stage. Further batch-culture experiments showed growth limitation at 60–70 mm lactic acid. After growth ceased, production of lactate continued until a lactic acid concentration of about 100 mm was reached; obviously an uncoupling of growth and acid production had occurred. Examining the effect of different concentrations of either lactic acid or hydrochloric acid, added to growing batch cultures of L. helveticus, it was shown that the undissociated lactic acid concentration was responsible for growth limitation and lactic acid production in this organism, whereas the pH value had only an indirect effect.  相似文献   

19.
Summary The industrial production of ethanol is affected mainly by contamination by lactic acid bacteria besides others factors that act synergistically like increased sulfite content, extremely low pH, high acidity, high alcoholic content, high temperature and osmotic pressure. In this research two strains of Saccharomyces cerevisiae PE-2 and M-26 were tested regarding the alcoholic fermentation potential in highly stressed conditions. These strains were subjected to values up to 200 mg NaHSO3 l−1, 6 g lactic acid l−1, 9.5% (w/v) ethanol and pH 3.6 during fermentative processes. The low pH (3.6) was the major stressing factor on yeasts during the fermentation. The M-26 strain produced higher acidity than the other, with higher production of succinic acid, an important inhibitor of lactic bacteria. Both strains of yeasts showed similar performance during the fermentation, with no significant difference in cell viability.  相似文献   

20.
A two-stage two-stream chemostat system and a two-stage two-stream immobilized upflow packed-bed reactor system were used for the study of lactic acid production by Lactobacillus casei subsp casei. A mixing ratio of D 12/D 2 = 0.5 (D = dilution rate) resulted in optimum production, making it possible to generate continuously a broth with high lactic acid concentration (48 g l−1) and with a lowered overall content of initial yeast extract (5  g l−1), half the concentration supplied in the one-step process. In the two-stage chemostat system, with the first stage at pH 5.5 and 37 °C and a second stage at pH 6.0, a temperature change from 40 °C to 45 °C in the second stage resulted in a 100% substrate consumption at an overall dilution rate of 0.05 h−1. To increase the cell mass in the system, an adhesive strain of L. casei was used to inoculate two packed-bed reactors, which operated with two mixed feedstock streams at the optimal conditions found above. Lactic acid fermentation started after a lag period of cell growth over foam glass particles. No significant amount of free cells, compared with those adhering to the glass foam, was observed during continuous lactic acid production. The extreme values, 57.5 g l−1 for lactic acid concentration and 9.72 g l−1 h−1 for the volumetric productivity, in upflow packed-bed reactors were higher than those obtained for free cells (48 g l−1  and 2.42 g l−1 h−1) respectively and the highest overall l(+)-lactic acid purity (96.8%) was obtained in the two-chemostat system as compared with the immobilized-cell reactors (93%). Received: 4 December 1997 / Received revision: 23 February 1998 / Accepted: 14 March 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号