首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 720 毫秒
1.
The time course of secretion of ecdysone in vitro by the prothoracic glands of Bombyx mori was studied through the penultimate and last-larval instars. Ecdysone was produced by the glands in high amounts by the penultimate instar at 72 and 84 h while the glands in the last instar exhibited a high activity over 4 days around the time of gut purge and thereafter. The glands in the penultimate instar produced ecdysone at a low level throughout the instar before the sharp peak of activity, when they became inactive and remained so for the first 3 days of the last instar after when they regained secretory activity. Sensitivity of the glands to prothoracicotropic hormone varied in accord with the changes in their secretory activity. Inactive glands were not stimulated by 22K-prothoracicotropic hormone. In addition, glands with maximal activity in the penultimate instar were insensitive to 22K-prothoracicotropic hormone. These results suggest that the prothoracic glands in the penultimate and last-instar larvae are physiologically different.  相似文献   

2.
Ecdysone has recently been shown to be able to trigger meiotic reinitiation in vitro in submature oocytes of Locusta. In the present study we have experimentally depressed (by 60-70%) ecdysone biosynthesis in the ovaries of adult females by rearing them on a diet with a modified sterol profile. Mature oocytes from such females fail to undergo normal reinitiation, but when incubated in vitro, can be induced to break their meiotic arrest by the addition of exogenous ecdysone. These results lend further support to the hypothesis that in Locusta, ovarian ecdysone is involved in the control of meiotic reinitiation.  相似文献   

3.
昆虫成虫蜕皮激素研究进展   总被引:3,自引:0,他引:3  
绝大多数成体昆虫羽化后,幼虫期间负责蜕皮激素合成的前胸腺即发生退化,但在一些内部生理及外部环境因子的调控下,某些成体组织(如生殖腺)可扮演类似前胸腺的角色合成与分泌蜕皮激素。蜕皮激素的功能发挥是经受体介导的,包括核受体(如EcR/USP)和膜受体(如DopEcR),它们广泛表达于成体许多组织,参与成虫行为、生殖、寿命、滞育及免疫应答等众多方面的调节,对维持基本的生理功能具有重要作用。就成虫蜕皮激素的产生组织及影响其滴度的因素、成虫蜕皮激素受体概述与组织分布、成虫蜕皮激素信号通路的功能发挥等研究进展方面加以综述。  相似文献   

4.
The normal growth of wing disks is compared with the growth of disks from larvae surgically deprived of ring glands at 5 or 6 days and later unable to form a puparium. During the third instar, the growth of wing disks is constant. It seems to slow down after puparium formation. Twelve days after the ablation of the ring gland, the volume of the wing disks is no different from the volume of the wing disks for 6-day-old larvae. Ecdysone is needed for the growth of imaginal wing disks but the ecdysone peak does not accelerate growth.  相似文献   

5.
Summary Hemolymph ecdysteroid titers and in vitro prothoracic gland ecdysteroid synthesis have been examined in last-instar larval (5th instar) females of Lymantria dispar. Ecdysteroids were quantified by radioimmunoassay and characterized by co-elution with known standards of ecdysteroids on reverse-phase high-performance liquid chromatography. Analysis of hemolymph yielded ecdysone and 20-OH-ecdysone in ratios of 1:1 (day 6, shortly after attainment of maximum weight) and 1:28 (day 10, molting peak). Analysis of in vitro culture media from glands challenged with extracts of brains or retrocerebral complexes, or left unchallenged, revealed only immunoreactive material co-eluting with a known standard of ecdysone. Time-course studies of in vitro prothoracic gland ecdysone secretion demonstrated a major peak on day 10, 1–2 days prior to pupal ecdysis, and a small elevation on days 5–6. On days 5 and 6, 2.29±0.41 and 2.65±0.72 ng ecdysone per gland, respectively, were secreted in 6-h cultures. On day 10, 25.69±4.36 ng was secreted in 6-h culture. The ability of prothoracic glands of various ages to respond to brain extracts containing prothoracicotropic hormone activity was tested by determining an activation ratio for each day of the instar. The activation ratio was determined over a 90-min period by dividing the amount of ecdysone secreted by one member of a pair of prothoracic glands in the presence of brain extract by that of its contralateral control gland in Grace's medium. Prior to the addition of brain extract, the activity of the glands was allowed to subside to basal level for 180 min in Grace's medium. The activition ratio was highest on days 3–7 and fell throughout the remainder of the instar as the inherent ability of the prothoracic gland to maintain high levels of ecdysteroid synthesis in vitro in the absence of prothoracicotropic hormone increased. A two-phase in vitro assay for prothoracicotropic hormone was established using activition ratios. This assay showed saturable doseresponse kinetics for prothoracic gland ecdysone secretion and specificity to extracts prepared from brain or retrocerebral complexes. A comparable assay for prothoracicotropic hormone purification, based on net synthesis and requiring half the number of prothoracic glands was also established.Abbreviations A r activation ratio - HPLC high performance liquid chromatography - HPSEC high performance size-exclusion chromatography - PG prothoracic gland - PTTH prothoracicotropic hormone - RIA radioimmunoassay  相似文献   

6.
Ecdysone was demonstrated by ultrastructural immunocytochemistry to be present in the mitochondria of the Y-organs of the crayfish Orconectes limosus. This is in remarkable contrast to the prothoracic glands of insects and suggests substantial differences in the biosynthesis of the same hormone, ecdysone, in crustaceans and insects.  相似文献   

7.
The in vitro secretion of ecdysteroids from the prothoracic glands of larvae of Gryllus bimaculatus was analysed by HPLC-RIA. The primary product was identified as 3-dehydroecdysone (65-93%), with lesser amounts of ecdysone (7-35%). Production and release of ecdysteroids from the prothoracic glands are calcium-dependent. The rate of ecdysteroid release was low during the beginning and the end of the last two larval stages and high in between. Prothoracic glands from young adult females produced only minor amounts of ecdysteroids and ceased hormone production around day 4 after the moult.  相似文献   

8.
9.
10.
ABSTRACT. Ecdysone stimulates the synthesis of vitellogenin in the fat body of mature female mosquitoes. Preparations from newly emerged animals, however, were found to be unresponsive to ecdysone. Responsiveness developed to a maximal level during a 36-h post-emergence period of maturation. This maturation could be accelerated with juvenile hormone application, prevented by allatectomy, and restored by corpora allata implants. It is concluded that the development of fat body responsiveness to ecdysone is dependent upon previous post-emergence exposure to juvenile hormone.  相似文献   

11.
The effect of ecdysone on the puffing activity of the polytene chromosomes of Ceratitis capitata has been studied in organ cultures of late-larval salivary glands. Culture of glands from 120-h-old larvae (puff stage 1) in the presence of ecdysone resulted in the initiation of the late-larval puffing cycle that is normally observed in 145-h-old larvae (puff stage 4). During a 7-h period in the presence of ecdysone, the puffing patterns of most loci resembled the in vivo patterns observed in the period between puff stages 4 and 10, indicating that the first puffing cycle can be initiated by the hormone and proceed almost to completion, in vitro. Culture of salivary glands in the presence of ecdysone and a protein-synthesis inhibitor, as well as ecdysone withdrawal and readdition experiments, indicated that most of the ecdysone-regulated puffs could be categorized into three classes: (i) the puffs that were suppressed immediately by ecdysone, even in the absence of protein synthesis; (ii) the puffs that were induced directly by ecdysone; and (iii) the puffs that were induced indirectly by ecdysone, that is, they were induced after a lag period of a few hours and required protein synthesis for their induction.  相似文献   

12.
The prothoracic glands of the early last-instar larva of Mamestra brassicae (day 0–3) were found previously to be insensitive to stimulation by juvenile hormone, whereas those later in the instar (from day 4 on) were activated by this hormone. When neck-ligatured young larvae (day-1, day-2 and day-3) were given juvenile hormone 5–10 days after ligation, pupation was induced. Similarly, juvenile hormone induced pupation of isolated abdomens which contained prothoracic glands taken from neck-ligatured day-3 larvae 5 days after ligation. If the glands were exposed to prothoracicotropic hormone (PTTH) from implanted brains before they were transplanted to isolated abdomens, their sensitivity to juvenile hormone activation was enhanced. Ecdysone but not 20-hydroxyecdysone given every 3 hr for 12 hr also slightly enhanced sensitivity. These results suggest that prothoracic glands from either day-1, day-2 or day-3 larvae can slowly acquire a sensitivity to juvenile hormone activation by prolonged incubation in the absence of factors from the head. The acquisition of sensitivity occurs more rapidly in the presence of both a factor from the brain, presumably PTTH, and ecdysone released from the prothoracic glands themselves.  相似文献   

13.
14.
The temporal organization of secretion of the prothoracicotropic hormone (PTTH) and ecdysone during larval-pupal development of Samia cynthia ricini was studied by ligations, with particular attention to the circadian control of the timing of hormone release. PTTH and ecdysone are required first for the induction of prodromes of pupation and again later for pupal-cuticle formation. PTTH release in the first step occurs during the second or third photophase after the last-larval ecdysis under a photoperiod of 12 hr light and 12 hr darkness and is thought to be under the control of a circadian clock. Ecdysone release follows 1.5 days later, i.e. during the scotophase that precedes the gut purge. In the second secretory step, PTTH is released 2 days after purging the gut, and ecdysone release follows 6 hr later. The PTTH release at this time occurs at a fixed time after the gut purge irrespective of light conditions, accounting for light insensitivity of the timing for pupal ecdysis. Possible mechanisms relating to the inconsistent association of a circadian clock with PTTH release, and those underlying the determination of timing of the gut purge are discussed.  相似文献   

15.
Ecdysone 20-hydroxylase activity has been detected in pupal wing discs of Pieris brassicae. This activity is due to an enzyme system located in microsomal fractions. Its apparent Km is 58 nM for ecdysone. The enzyme is inhibited by the reaction product 20-hydroxyecdysone with an apparent Ki of 2.6 μM. Its activity varied during pupal-adult development with a maximum on day 4, when ecdysone levels are the highest in the animal. Although low, the peak activity is sufficient to assure 25% of the conversion of endogenous ecdysone into 20-hydroxyecdysone in pupae. Ecdysone and 20-hydroxyecdysone levels were measured in hemolymph and whole animals; ecdysone appears to be mainly located in hemolymph, whereas 20-hydroxyecdysone seems to be equally distributed between hemolymph and tissues. All these findings are discussed in relation to the roles of ecdysone and 20-hydroxyecdysone during pupal-adult development.  相似文献   

16.
Ecdysone 20-monooxygenase, an enzyme which converts ecdysone to ecdysterone (the major moulting hormone of insects) has been characterized in cell-free preparations of tissues from African migratory locust. The product of the reaction has been identified as ecdysterone on the basis of several microchemical derivatization and chromatographic methods. Ecdysone 20-monooxygenase activity is located primarily in the microsomal fraction which also carries NADPH cytochrome c reductase and cytochrome P-450, as shown by sucrose density gradient centrifugation. Optimal conditions for the ecdysone 20-monooxygenase assay have been determined. The enzyme has a Km for ecdysone of 2.7 x 10(-7) M and is competitvely inhibited by ecdysterone (Ki = 7.5 x 10(-7) M). Ecdysone 20-monooxygenase is a typical cytochrome P-450 linked monooxygenase: the reaction requires O2 and is inhibited by CO, an effect partially reversed by white light. The enzyme is effectively inhibited by several specific monooxygenase inhibitors and by sulfhydryl reagents, but not by cyanide ions. Ecdysone elicits a type I difference spectrum when added to oxidized microsomes. NADPH acts as preferential electron donor. The transfer of reducing equivalents proceeds through NADPH cytochrome c (P-450) reductase: ecdysone 20-monooxygenase is inhibited by cytochrome c. Both NADPH cytochrome c reductase and ecdysone 20-monooxygenase are inhibited by NADP+ and show a similar Km for NADPH. The Malpighian tubules have the highest specific activity of ecdysone 20-monooxygenase, while fat body contain most of the cytochrome P-450 and NADPH cytochrome c reductase.  相似文献   

17.
A Robert  A Strambi  C Strambi  J Gonella 《Life sciences》1986,39(26):2617-2622
In order to examine the possible effects of ecdysteroids on parturition, we studied in vitro the influence of ecdysone and 20-hydroxyecdysone on the motility of isolated uterus from virgin and pregnant female tsetse fly (Glossina fuscipes). Ecdysone initiates phasic uterine contractions or enhances the frequency of preexisting contractile activity. In contrast, uterine contractions are decreased or abolished by 20-hydroxyecdysone. Pharmacological data indicate that tsetse fly uterus exhibits myogenic and nerve-evoked contractions. Ecdysteroids mainly act on nervous structures that control muscle contractions. Our results provide evidence for a specific action of ecdysteroids on a nerve-muscle target involved in female reproduction.  相似文献   

18.
The size and number of secretory granules in late larval salivary glands of Drosophila melanogaster have been related to interecdysial and early metamorphic development represented by well-known puffs in polytene chromosomes. Interecdysial period (puff stage 1 (PS1)) is characterized by presence of numerous small granules (11,000 per cell). The transition from PSI to early metamorphic phase (PS2 and upwards), induced by rapid elevation in endogenous steroid hormone ecdysone, is accompanied by continuous growth of granule diameter with concomitant reduction in their number per cell. In the PS4, just prior to secretion, approximately 3000 mature granules occur per cell. The mature state is associated with the change from hyperbolic to Gaussian distribution of granule number over their size range. Similar changes in secretory granule parameters were observed in interecdysial salivary glands explanted from 3rd instar larvae and cultured in vitro in medium containing 5x10(-6) m ecdysone.  相似文献   

19.
The growth and metamorphosis of insects are regulated by ecdysteroid hormones produced in the ring gland. Ecdysone biosynthesis-related genes are both highly and specifically expressed in the ring gland. However, the intrinsic regulation of ecdysone biosynthesis has received little attention. Here we used the Drosophila npc1 gene to study the mechanism of ring gland-specific gene expression. npc1 is important for sterol trafficking in the ring gland during ecdysone biosynthesis. We have identified a conserved ring gland-specific cis-regulatory element (RSE) in the npc1 promoter using promoter fusion reporter analysis. Furthermore, genetic loss-of-function analysis and in vitro electrophoretic mobility shift assays revealed that the ecdysone early response gene broad complex (br) is a vital factor in the positive regulation of npc1 ring gland expression. Moreover, br also affects the ring gland expression of many other ecdysone biosynthetic genes as well as torso and InR, two key factors in the regulation of ecdysone biosynthesis. These results imply that ecdysone could potentially act through its early response gene br to achieve positive feedback regulation of ecdysone biosynthesis during development.  相似文献   

20.
The cytosolic free calcium was measured with Fura-2 in single prothoracic gland cells of Galleria larvae. During the last two larval instars calcium concentration correlated with ecdysone secretion by the glands. Addition of prothoracicotropic hormone (PTTH) from brains of Galleria larvae to prothoracic glands in vitro induced a significant increase in calcium in the gland cells. This effect of PTTH was abolished by removal of extracellular calcium, or by the addition of lanthanum or of the calcium channel antagonists nicardipine and verapamil. The calcium channel agonist Bay K 8644 evoked an increase in intracellular calcium. TMB-8, an inhibitor of intracellular calcium mobilization, did not block the PTTH-stimulated rise in calcium concentration or ecdysone production, indicating that intracellular calcium stores are not involved in the calcium-mediated ecdysone synthesis. Moreover, PTTH seems to exert its action by influencing dihydropyridine-sensitive calcium channels in the plasma membrane. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号