首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two forms of apolipoprotein (apo) B are found in mammals. The shorter form is translated from an edited mRNA in which a specific cytidine base is deaminated to a uridine, creating a new stop codon. Apo B mRNA editing is mediated by a site-specific cytidine deaminase that recognizes a downstream target sequence in the RNA. The enzyme has no energy or cofactor requirements and no RNA component, and thus bears no obvious relationship to RNA processing events such as splicing or polyadenylation. While apo B mRNA editing activity may have arrived late in evolution to target dietary lipid to the liver in mammals, the discovery of the editing activity in tissues and cells that do not express apo B suggests a more widespread role in the generation of RNA and protein diversity.  相似文献   

2.
3.
In humans, apolipoprotein (apo) B48 is synthesized in the intestine as an obligatory constituent of chylomicrons. Apolipoprotein B48 is identical to the amino-terminal 2152 amino acids (240 kDa) of apoB100 and is translated from an edited apoB mRNA in which codon 2153 has been converted from glutamine (CAA) to what is recognized as a premature stop codon (UAA). To determine whether the apoB mRNA editing in fact converts cytosine 6666 in codon 2153 to uracil, we incubated a synthetic apoB RNA containing 32P-labeled cytosines in an in vitro editing system prepared from rabbit enterocytes. The in vitro edited RNA was purified and digested to nucleoside 5'-monophosphates, which were analyzed on two-dimensional thin-layer chromatography. We found that the edited base co-migrated with authentic uridine 5'-monophosphate. Thus, cytosine 6666 is converted to uracil, most likely by a nucleotide-specific cytosine deaminase. To determine whether apoB mRNA editing occurs in cell lines that do not synthesize apoB, we stably transfected a high expression vector containing 354 base pairs of apoB sequence into 18 different cell lines. We found apoB mRNA editing activity in five osteosarcoma cell lines and one epidermoid cell line, none of which synthesizes any detectable apoB. Thus, apoB mRNA editing occurs in cell lines that do not synthesize apoB, which suggests that mRNA editing may be a common biological phenomenon in eukaryotic cells.  相似文献   

4.
The C->U editing of RNA is widely found in plant and animal species. In mammals it is a discrete process confined to the editing of apolipoprotein B (apoB) mRNA in eutherians and the editing of the mitochondrial tRNA for glycine in marsupials. Here we have identified and characterised apoB mRNA editing in the American opossum Monodelphus domestica. The apoB mRNA editing site is highly conserved in the opossum and undergoes complete editing in the small intestine, but not in the liver or other tissues. Opossum APOBEC-1 cDNA was cloned, sequenced and expressed. The encoded protein is similar to APOBEC-1 of eutherians. Motifs previously identified as involved in zinc binding, RNA binding and catalysis, nuclear localisation and a C-terminal leucine-rich domain are all conserved. Opossum APOBEC-1 contains a seven amino acid C-terminal extension also found in humans and rabbits, but not present in rodents. The opossum APOBEC-1 gene has the same intron/exon organisation in the coding sequence as the eutherian gene. Northern blot and RT-PCR analyses and an editing assay indicate that no APOBEC-1 was expressed in the liver. Thus the far upstream promoter responsible for hepatic expression in rodents does not operate in the opossum. An APOBEC-1-like enzyme such as might be involved in C->U RNA editing of tRNA in marsupial mitochondria was not demonstrated. The activity of opossum APOBEC-1 in the presence of both chicken and rodent auxiliary editing proteins was comparable to that of other mammals. These studies extend the origins of APOBEC-1 back 170 000 000 years to marsupials and help bridge the gap in the origins of this RNA editing process between birds and eutherian mammals.  相似文献   

5.
6.
RNA编辑是一种发生在转录后核苷酸特异位点的加工修饰现象,包括核苷酸的插入、删除和改变.高等植物中RNA编辑主要发生在线粒体与叶绿体中,具有重要的生物学功能,其机制仍在探索中.而PPR蛋白作为RNA编辑的反式作用因子,成为近几年来分子生物学的研究热点.该文就PPR蛋白、RNA编辑及PPR蛋白参与RNA编辑的机制等进行了综述.  相似文献   

7.
RNA editing   总被引:3,自引:0,他引:3  
The term RNA editing describes those molecular processes in which the information content is altered in an RNA molecule. To date such changes have been observed in tRNA. rRNA and mRNA molecules of eukaryotes, but not prokaryotes. The demonstration of RNA editing in prokaryotes may only be a matter of time, considering the range of species in which the various RNA editing processes have been found. RNA editing occurs in the nucleus, as well as in mitochondria and plastids, which are thought to have evolved from prokaryotic-like endosymbionts. Most of the RNA editing processes, however, appear to be evolutionarily recent acquisitions that arose independently. The diversity of RNA editing mechanisms includes nucleoside modifications such as C to U and A to I deaminations, as well as non-templated nucleotide additions and insertions. RNA editing in mRNAs effectively alters the amino acid sequence of the encoded protein so that it differs from that predicted by the genomic DNA sequence.  相似文献   

8.
A functional mooring sequence, known to be required for apolipoprotein B (apoB) mRNA editing, exists in the mRNA encoding the neurofibromatosis type I (NF1) tumor suppressor. Editing of NF1 mRNA modifies cytidine in an arginine codon (CGA) at nucleotide 2914 to a uridine (UGA), creating an in frame translation stop codon. NF1 editing occurs in normal tissue but was several-fold higher in tumors. In vitro editing and transfection assays demonstrated that apoB and NF1 RNA editing will take place in both neural tumor and hepatoma cells. Unlike apoB, NF1 editing did not demonstrate dependence on rate-limiting quantities of APOBEC-1 (the apoB editing catalytic subunit) suggesting that different trans-acting factors may be involved in the two editing processes.  相似文献   

9.
10.
RNA编辑是指由RNA水平的核苷酸改变所引起的密码子发生变化的一种预定修饰,它的发现是近年来对分子生物学中心法则的重要补充。本文以红莲型(HL)水稻细胞质雄性不育系粤泰A,保持系粤泰B和杂种F_1(不育系A与恢复系71068的杂交一代)为材料,首次研究了线粒体基因coxⅡ转录本的编辑位点。coxⅡ基因的转录本有15个编辑位点,其中有14个发生在密码子的第一和第二位点。这14个位点的编辑可改变氨基酸的种类,并导致所编码蛋白的疏水性以及所编码蛋白在氨基酸序列上的保守性增加。  相似文献   

11.
Gray MW 《IUBMB life》2003,55(4-5):227-233
'RNA editing' describes the programmed alteration of the nucleotide sequence of an RNA species, relative to the sequence of the encoding DNA. The phenomenon encompasses two generic patterns of nucleotide change, 'insertion/deletion' and 'substitution', defined on the basis of whether the sequence of the edited RNA is colinear with the DNA sequence that encodes it. RNA editing is mediated by a variety of pathways that are mechanistically and evolutionarily unrelated. Messenger, ribosomal, transfer and viral RNAs all undergo editing in different systems, but well-documented cases of this phenomenon have so far been described only in eukaryotes, and most often in mitochondria. Editing of mRNA changes the identity of encoded amino acids and may create translation initiation and termination codons. The existence of RNA editing violates one of the long-accepted tenets of genetic information flow, namely, that the amino acid sequence of a protein can be directly predicted from the corresponding gene sequence. Particular RNA editing systems display a narrow phylogenetic distribution, which argues that such systems are derived within specific eukaryotic lineages, rather than representing traits that ultimately trace to a common ancestor of eukaryotes, or even further back in evolution. The derived nature of RNA editing raises intriguing questions about how and why RNA editing systems arise, and how they become fixed as additional, essential steps in genetic information transfer.  相似文献   

12.
13.
The C-to-U editing of apolipoprotein B (apo-B) mRNA is catalyzed by a multiprotein complex that recognizes an 11-nucleotide mooring sequence downstream of the editing site. The catalytic subunit of the editing enzyme, apobec-1, has cytidine deaminase activity but requires additional unidentified proteins to edit apo-B mRNA. We purified a 65-kDa protein that functionally complements apobec-1 and obtained peptide sequence information which was used in molecular cloning experiments. The apobec-1 complementation factor (ACF) cDNA encodes a novel 64.3-kDa protein that contains three nonidentical RNA recognition motifs. ACF and apobec-1 comprise the minimal protein requirements for apo-B mRNA editing in vitro. By UV cross-linking and immunoprecipitation, we show that ACF binds to apo-B mRNA in vitro and in vivo. Cross-linking of ACF is not competed by RNAs with mutations in the mooring sequence. Coimmunoprecipitation experiments identified an ACF-apobec-1 complex in transfected cells. Immunodepletion of ACF from rat liver extracts abolished editing activity. The immunoprecipitated complexes contained a functional holoenzyme. Our results support a model of the editing enzyme in which ACF binds to the mooring sequence in apo-B mRNA and docks apobec-1 to deaminate its target cytidine. The fact that ACF is widely expressed in human tissues that lack apobec-1 and apo-B mRNA suggests that ACF may be involved in other RNA editing or RNA processing events.  相似文献   

14.
15.
16.
17.
RNA编辑是一种转录后基因加工修饰现象,广泛存在于高等植物细胞器中。已有研究表明,RNA编辑与植物发生白化或者黄化有关。通过PCR、RT-PCR及测序的方法,对具有阶段性白化特性的小麦(Triticum aestivum)返白系FA85及其野生型矮变一号(Aibian 1)的叶绿体蛋白质编码基因RNA编辑位点进行了测定,在14个基因上发现了26个编辑位点。有5个编辑位点在2个株系之间存在编辑效率的差异,且这些差异的位点均位于编码叶绿体RNA聚合酶的基因上,其中3个位点编辑前后对应的蛋白质二级结构可能有差异。对2个株系叶绿体中PEP、NEP及PEP、NEP共同依赖基因转录水平的检测显示,除psbA和clpP外,其它基因在小麦返白系中的转录水平均有不同程度的下降。这种转录水平的显著下降及叶绿体RNA聚合酶基因上RNA编辑位点编辑效率的改变,可能与小麦返白系叶片的返白有关。  相似文献   

18.
Intestinal apolipoprotein B mRNA is edited at nucleotide 6666 by a C to U transition resulting in a translational stop codon. The enzymatic properties of the editing activity were characterised in vitro using rat enterocyte cytosolic extract. The editing activity has no nucleotide or ion cofactor requirement. It shows substrate saturation with an apparent Km for the RNA substrate of 2.2 nM. The editing enzyme requires no lag period prior to catalysis, and does not assemble into a higher order complex on the RNA substrate. In crude cytosolic extract editing activity is completely abolished by treatment with micrococcal nuclease or RNAse A. Partially purified editing enzyme is no longer sensitive to nucleases, but is inhibited in a dose dependent manner by nuclease inactivated crude extract. The buoyant density of partially purified editing enzyme is 1.3 g/ml, that of pure protein. Therefore, the apolipoprotein B mRNA editing activity consists of a well defined enzyme with no RNA component. The nuclease sensitivity in crude cytosolic extract is explained by the generation of inhibitors for the editing enzyme. The editing of apo B mRNA has little similarity to complex mRNA processing events such as splicing and unlike editing in kinetoplastid protozoa does not utilise guide RNAs.  相似文献   

19.
RNA干扰的研究进展及应用   总被引:2,自引:0,他引:2  
RNA干扰(RNAi)是生物体的一种在进化上保持高度保守的,能抵御外源基因或外来病毒侵犯的重要防御机制,是一种序列特异性的转录后基因沉默现象。它由双链RNA引发,广泛存在于动、植物等各种生物体内。我们简要综述了RNAi发生的机制、特点、哺乳动物与RNAi现象,以及RNAi的应用等。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号